Вычисление второй производной по одной переменной
Материал из MachineLearning.
(Различия между версиями)
Строка 1: | Строка 1: | ||
== Введение == | == Введение == | ||
=== Постановка математической задачи === | === Постановка математической задачи === | ||
- | Допустим, что в некоторой точке <tex> | + | Допустим, что в некоторой точке <tex>x</tex> у функции <tex>y(x)</tex> существует производная 2-го порядка <tex>y''(x_0)</tex>, которую точно вычислить либо не удается, либо слишком сложно. В этом случае для приближенного нахождения производной функции требуется использовать методы численного дифференцирования. |
- | + | ||
- | + | ||
== Изложение метода == | == Изложение метода == | ||
+ | При численном дифференцировании функцию <tex>y(x)</tex> аппроксимируют легко вычисляемой функцией <tex>\fi(x;a)</tex> и приближенно полагают <tex>y^{(k)}(x)\approx\fi^{(k)}(x;a)</tex>. При этом можно использовать различные способы аппроксимации. Рассмотрим простейший случай - аппроксимацию интерполяционным многочленом Ньютона | ||
== Числовой пример == | == Числовой пример == | ||
== Рекомендации программисту == | == Рекомендации программисту == |
Версия 17:16, 15 октября 2008
Содержание |
Введение
Постановка математической задачи
Допустим, что в некоторой точке у функции существует производная 2-го порядка , которую точно вычислить либо не удается, либо слишком сложно. В этом случае для приближенного нахождения производной функции требуется использовать методы численного дифференцирования.
Изложение метода
При численном дифференцировании функцию аппроксимируют легко вычисляемой функцией и приближенно полагают . При этом можно использовать различные способы аппроксимации. Рассмотрим простейший случай - аппроксимацию интерполяционным многочленом Ньютона
Числовой пример
Рекомендации программисту
Заключение
Список литературы
- А.А.Самарский, А.В.Гулин. Численные методы. Москва «Наука», 1989.
- Н.С.Бахвалов, Н.П.Жидков, Г.М.Кобельков. Численные методы. Лаборатория Базовых Знаний, 2003.
http://win-web.ru/uchebniki/open/bahvalov_chisl_meth.html
- Н.Н.Калиткин. Численные методы. Москва «Наука», 1978.