Интерполяция каноническим полиномом
Материал из MachineLearning.
Строка 100: | Строка 100: | ||
Введём следующее '''определение''': полиномом Чебышева называется многочлен вида | Введём следующее '''определение''': полиномом Чебышева называется многочлен вида | ||
<br><center>T<sub>k</sub>(x) = cos(k arccos x), |x|≤1.</center> | <br><center>T<sub>k</sub>(x) = cos(k arccos x), |x|≤1.</center> | ||
- | + | ||
+ | |||
Известно (см. ссылки литературы), что если узлы интерполяции ''x<sub>0</sub>, x<sub>1</sub>,...,x<sub>n</sub>'' являются корнями полинома Чебышева степени ''n+1'', то величина <tex>\max_{x \in [a,b]} \left| \omega_{n+1}(x) \right|</tex> принимает наименьшее возможное значение по сравнению с любым другим выбором набора узлов интерполяции. | Известно (см. ссылки литературы), что если узлы интерполяции ''x<sub>0</sub>, x<sub>1</sub>,...,x<sub>n</sub>'' являются корнями полинома Чебышева степени ''n+1'', то величина <tex>\max_{x \in [a,b]} \left| \omega_{n+1}(x) \right|</tex> принимает наименьшее возможное значение по сравнению с любым другим выбором набора узлов интерполяции. | ||
- | + | ||
+ | |||
Очевидно, что в случае ''k'' = 1 функция ''T<sub>1</sub>(x)'', действительно, является полиномом первой степени, поскольку T<sub>1</sub>(x) = cos(arccos x) = x. | Очевидно, что в случае ''k'' = 1 функция ''T<sub>1</sub>(x)'', действительно, является полиномом первой степени, поскольку T<sub>1</sub>(x) = cos(arccos x) = x. | ||
+ | |||
В случае ''k'' = 2 ''T<sub>2</sub>(x)'' тоже полином второй степени. Это нетрудно проверить. Воспользуемся известным тригонометрическим тождеством: cos2<i>θ</i> = 2cos²<i>θ</i> - 1, положив ''θ'' = arccos ''x''. | В случае ''k'' = 2 ''T<sub>2</sub>(x)'' тоже полином второй степени. Это нетрудно проверить. Воспользуемся известным тригонометрическим тождеством: cos2<i>θ</i> = 2cos²<i>θ</i> - 1, положив ''θ'' = arccos ''x''. | ||
Тогда получим следующее соотношение: <i>T<sub>2</sub>(x)</i> = 2x² - 1. | Тогда получим следующее соотношение: <i>T<sub>2</sub>(x)</i> = 2x² - 1. | ||
+ | |||
С помощью тригонометрического тождества cos(<i>k</i> + 1)<i>θ</i> = 2cos<i>θ</i>cos<i>kθ</i> - cos(<i>k</i> - 1) легко показать, что для полиномов Чебышева справедливо реккурентное соотношение: | С помощью тригонометрического тождества cos(<i>k</i> + 1)<i>θ</i> = 2cos<i>θ</i>cos<i>kθ</i> - cos(<i>k</i> - 1) легко показать, что для полиномов Чебышева справедливо реккурентное соотношение: | ||
<p align="center"><i>T<sub>k+1</sub>(x) = 2xT<sub>k</sub>(x) - T<sub>k-1</sub>(x)</i></p> | <p align="center"><i>T<sub>k+1</sub>(x) = 2xT<sub>k</sub>(x) - T<sub>k-1</sub>(x)</i></p> | ||
- | + | ||
+ | |||
При помощи данного соотношения можно получить формулы для полиномов Чебышева любой степени. | При помощи данного соотношения можно получить формулы для полиномов Чебышева любой степени. | ||
- | + | ||
+ | |||
Корни полинома Чебышева легко находятя из уравнения: ''T<sub>k</sub>(x)'' = cos(''k'' arccos ''x'') = 0. Получаем, что уравнение имеет ''k'' различных корней, расположенных на отрезке [-1,1]: <tex>x_m = \cos \frac{2m+1}{2k}\pi, \, m = 0,1, \cdots, k-1,</tex> которые и следует выбирать в качестве узлов интерполирования. | Корни полинома Чебышева легко находятя из уравнения: ''T<sub>k</sub>(x)'' = cos(''k'' arccos ''x'') = 0. Получаем, что уравнение имеет ''k'' различных корней, расположенных на отрезке [-1,1]: <tex>x_m = \cos \frac{2m+1}{2k}\pi, \, m = 0,1, \cdots, k-1,</tex> которые и следует выбирать в качестве узлов интерполирования. | ||
- | + | ||
+ | |||
Нетрудно видеть, что корни на [-1,1] расположены симметрично и неравномерно - чем ближе к краям отрезка, тем корни расположены плотнее. Максимальное значение модуля полинома Чебышева равно 1 и достигается в точках <tex>\cos \frac{m}{k}\pi.</tex> | Нетрудно видеть, что корни на [-1,1] расположены симметрично и неравномерно - чем ближе к краям отрезка, тем корни расположены плотнее. Максимальное значение модуля полинома Чебышева равно 1 и достигается в точках <tex>\cos \frac{m}{k}\pi.</tex> | ||
- | + | ||
+ | |||
Если положить <tex>\omega_k(x) = \frac1{2^{k-1}}T_k(x),</tex> то для того, чтобы коэффициент при старшей степени полинома <i>ω<sub>k</sub>(x)</i> был равен 1, <tex>\max_{x \in [-1,1]}\omega_k(x) = \frac1{2^{k-1}}.</tex> | Если положить <tex>\omega_k(x) = \frac1{2^{k-1}}T_k(x),</tex> то для того, чтобы коэффициент при старшей степени полинома <i>ω<sub>k</sub>(x)</i> был равен 1, <tex>\max_{x \in [-1,1]}\omega_k(x) = \frac1{2^{k-1}}.</tex> | ||
- | + | ||
+ | |||
Известно, что для любого полинома ''p<sub>k</sub>(x)'' степени ''k'' с коэффициентом, равным единице при старшей производной верно неравенство <tex>\max_{x \in [-1,1]}p_k(x) \geq \frac1{2^{k-1}},</tex> т.е. полиномы Чебышева являются полиномами, наименее уклоняющимися от нуля. | Известно, что для любого полинома ''p<sub>k</sub>(x)'' степени ''k'' с коэффициентом, равным единице при старшей производной верно неравенство <tex>\max_{x \in [-1,1]}p_k(x) \geq \frac1{2^{k-1}},</tex> т.е. полиномы Чебышева являются полиномами, наименее уклоняющимися от нуля. | ||
Версия 13:42, 17 октября 2008
Содержание |
Постановка задачи
Пусть задана функция f(x) на отрезке [a,b]. Задача интерполяции состоит в построении функции g(x), совпадающей с f(x) в некотором наборе точек x0, x1,...,xn из отрезка [a,b]. Эти точки называются узлами интерполяции. Также должно выполняться условие: g(xk) = yk, k=0,...,n, где yk = f(xk).
1. Полином в каноническом виде
Известно, что любая непрерывная на отрезке [a,b] функция f(x) может быть хорошо приближена некоторым полиномом Pn(x). Справедлива следующая Теорема (Вейерштрасса): Для любого >0 существует полином Pn(x) степени , такой, что
В качестве аппроксимирующей функции выберем полином степени n в каноническом виде:
Коэффициенты полинома определим из условий Лагранжа , , что с учётом предыдущего выражения даёт систему уравнений с n+1 неизвестными:
Обозначим систему таких уравнений символом (*) и перепишем её следующим образом:
или в матричной форме: где - вектор-столбец, содержащий неизвестные коэффициенты , - вектор-столбец, составленный из табличных значений функции , а матрица имеет вид:
Система линейных алгебраических уравнений (*) относительно неизвестных иметь единственное решение, если определитель матрицы отличен от нуля.
Определитель матрицы называют определителем Вандермонда, его можно вычислить по следующей формуле:
Число узлов интерполяционного полинома должно быть на единицу больше его степени. Это понятно из интуитивных соображений: через 2 точки можно провести единственную прямую, через 3 - единственную параболу и т.д. Но полином может получиться и меньшей степени. Т.е. если 3 точки лежат на одной прямой, то через них пройдёт единственный полином первой степени (но это ничему не противоречит: просто коэффициент при старшей степени равен нулю).
При достаточной простоте реализации метода он имеет существенный недостаток: число обусловленности матрицы быстро растёт с увеличением числа узлов интерполяции, что можно показать на следующем графике
[Рис.1 Зависимость числа обусловленности матрицы от количества узлов интерполяции]
Из-за плохой обусловленности матрицы рекомендуется применять другие методы интерполяции (например, метод Лагранжа). При этом важно понимать, что при теоретическом принемении различных методов они приводят к одинаковому результату, т.е. мы получим один и тот же полином.
Однако при практической реализации мы получим полиномы различной точности аппроксимации из-за погрешности вычислений аппаратуры.
2. Способ вычисления полинома в точке
Чтобы изобразить графически аппроксимирующий полином, необходимо вычислить его значение в ряде точек. Это можно сделать следующими способами.
Первый способ. Можно посчитать значение a1x и сложить с a0. Далее найти a2x2, сложить с полученным результатом, и так далее. Таким образом, на j-ом шаге вычисляется значение ajxj и складывается с уже вычисленной суммой .
Вычисление значения ajxj требует j операций умножения. Т.е. для подсчёта многочлена в заданной точке требуется (1 + 2 + ... + n) = n(n+1)/2 операций умножения и n операций сложения. Всего операций в данном случае: Op1 = n(n+1)/2 + n.
Второй способ. Полином можно также легко вычислить с помощью так называемой схемы Горнера:
Для вычисления значения во внутренних скобках anx + an-1 требуется одна операция умножения и одна операция сложения. Для вычисления значения в следующих скобках (anx + an-1)x + an-2 требуется опять одна операция умножения и одна операция сложения, т.к. anx + an-1 уже вычислено, и т.д.
Тогда в этом способе вычисление Pn(x) потребует n операций умножения и n операций сложения, т.е. сложность вычислений Op2 = n+n = 2n. Ясно, что Op2 << Op1.
Анализ метода
1. Сложность вычислений
2. Погрешность интерполяции
Предположим, что на отрезке интерполирования [a,b] функция f(x) n раз непрерывно-дифференцируема. Погрешность интерполяции складывается из погрешности самого метода и ошибок округления.
Ошибка приближения функции f(x) интерполяционным полиномом n-ой степени Pn(x) в точке x определяется разностью: Rn(x) = f(x) - Pn(x).
Погрешность Rn(x) определяется следующим соотношением:
Здесь - производная (n+1)-го порядка функции f(x) в некоторой точке а функция определяется как
Если максимальное значение производной fn+1(x) равно то для погрешности интерполяции следует оценка:
3. Выбор узлов интерполяции
Ясно, что от выбора узлов интерполируемой функции напрямую зависит, насколько точно многочлен будет являться её приближением.
Введём следующее определение: полиномом Чебышева называется многочлен вида
Известно (см. ссылки литературы), что если узлы интерполяции x0, x1,...,xn являются корнями полинома Чебышева степени n+1, то величина принимает наименьшее возможное значение по сравнению с любым другим выбором набора узлов интерполяции.
Очевидно, что в случае k = 1 функция T1(x), действительно, является полиномом первой степени, поскольку T1(x) = cos(arccos x) = x.
В случае k = 2 T2(x) тоже полином второй степени. Это нетрудно проверить. Воспользуемся известным тригонометрическим тождеством: cos2θ = 2cos²θ - 1, положив θ = arccos x.
Тогда получим следующее соотношение: T2(x) = 2x² - 1.
С помощью тригонометрического тождества cos(k + 1)θ = 2cosθcoskθ - cos(k - 1) легко показать, что для полиномов Чебышева справедливо реккурентное соотношение:
Tk+1(x) = 2xTk(x) - Tk-1(x)
При помощи данного соотношения можно получить формулы для полиномов Чебышева любой степени.
Корни полинома Чебышева легко находятя из уравнения: Tk(x) = cos(k arccos x) = 0. Получаем, что уравнение имеет k различных корней, расположенных на отрезке [-1,1]: которые и следует выбирать в качестве узлов интерполирования.
Нетрудно видеть, что корни на [-1,1] расположены симметрично и неравномерно - чем ближе к краям отрезка, тем корни расположены плотнее. Максимальное значение модуля полинома Чебышева равно 1 и достигается в точках
Если положить то для того, чтобы коэффициент при старшей степени полинома ωk(x) был равен 1,
Известно, что для любого полинома pk(x) степени k с коэффициентом, равным единице при старшей производной верно неравенство т.е. полиномы Чебышева являются полиномами, наименее уклоняющимися от нуля.