Тригонометрическая интерполяция
Материал из MachineLearning.
(→Постановка задачи) |
(→Дискретное преобразование Фурье) |
||
Строка 27: | Строка 27: | ||
<tex> f(x_j)=\sum_{-N/2<k\le N/2} a_k exp{2\pi ikx_j}, </tex> и это соответсвует интерполяции тригонометрическим многочленом | <tex> f(x_j)=\sum_{-N/2<k\le N/2} a_k exp{2\pi ikx_j}, </tex> и это соответсвует интерполяции тригонометрическим многочленом | ||
<tex>S_N=\sum{-N/2<k\le N/2}a_k exp{2\pi i kx}</tex>, где коэффициенты <tex>a_k</tex> считаются по тем же формулам. | <tex>S_N=\sum{-N/2<k\le N/2}a_k exp{2\pi i kx}</tex>, где коэффициенты <tex>a_k</tex> считаются по тем же формулам. | ||
- | |||
- | |||
- | |||
Если вычисления проводить по вышеприведенноым формулам, то на выполнения каждого из преобразований потребуется <tex>N^2</tex> арифметических операций (считаем, что <tex>\omega=exp{2\pi i/N}</tex> уже вычислены). Если N не является простым числом, то количество операций можно значительно сократить, используя [[быстрое преобразование Фурье]]. | Если вычисления проводить по вышеприведенноым формулам, то на выполнения каждого из преобразований потребуется <tex>N^2</tex> арифметических операций (считаем, что <tex>\omega=exp{2\pi i/N}</tex> уже вычислены). Если N не является простым числом, то количество операций можно значительно сократить, используя [[быстрое преобразование Фурье]]. |
Версия 19:37, 18 октября 2008
Содержание |
Дискретное преобразование Фурье
В прикладных задачах часто используются различные преобразования Фурье функций непрерывного аргументся, а также представлений функций с помощью сходящихся тригонометрических рядов. Всякую непрерывно дифференцируемую фцнкцию можно разложить в ряд Фурье:
коэффициенты находятся по следущим формулам
Но как правила функция задана только в некоторых точках или у нас есть возможность узнать ее значения только в некотором конечном числе точек. Допустим, .В этом случае аналогом функции непрервной интерполяции функции будет дискретный вариант:
Разложение имеет место когда функцию можно приблизить тригонометрическим многочленом следущего вида в заданных нам точках
Система функций является ортогональной, на множестве точек при том что , таким образом разложение имеет место и коэффициенты представляются в виде:
Далее для удобства записи будем использовать
Часто используется следущий вид формул:
и это соответсвует интерполяции тригонометрическим многочленом , где коэффициенты считаются по тем же формулам.
Если вычисления проводить по вышеприведенноым формулам, то на выполнения каждого из преобразований потребуется арифметических операций (считаем, что уже вычислены). Если N не является простым числом, то количество операций можно значительно сократить, используя быстрое преобразование Фурье.
Пример использования
Рассмотрим применение тригонметрической интерполяции. Будем использовать для приблежения следущий тригонометрический полином: