Участник:Gukov/Песочница
Материал из MachineLearning.
(→Изложение метода) |
(→Изложение метода) |
||
Строка 45: | Строка 45: | ||
Чтобы избавиться от степени <tex>h^{\alpha _1}</tex>, составляющей ошибку (ибо среди всех слагаемых, составляющих ошибку, слагамое при <tex>h^{\alpha _1}</tex> является наибольшим) вычислим величину <tex>r^{\alpha _1}\,I(\frac{h}r) - I(h)</tex>. Имеем: | Чтобы избавиться от степени <tex>h^{\alpha _1}</tex>, составляющей ошибку (ибо среди всех слагаемых, составляющих ошибку, слагамое при <tex>h^{\alpha _1}</tex> является наибольшим) вычислим величину <tex>r^{\alpha _1}\,I(\frac{h}r) - I(h)</tex>. Имеем: | ||
- | :<tex> | + | :<tex>r^{\alpha _1}\,I(\frac{h}{r}) - I(h) = r^{\alpha _1}\,I_0 - I_0 + a_1 h^{\alpha _1} - a_1 h^{\alpha _1} + a_2\,\frac{h^{\alpha _2}}{r^{\alpha _2 - \alpha _1}} - a_2 h^{\alpha _2} + \ldots</tex> |
+ | |||
+ | Отсюда | ||
+ | |||
+ | :<tex>I_1(h) = \frac{r^{\alpha _1}I(\frac{h}r) - I(h)}{r^{\alpha _1} - 1} = I_0 + a_2\,\frac{r^{\alpha _1 - \alpha _2} - 1}{r^{\alpha _1} - 1}\,h^{\alpha _2} + \ldots </tex> | ||
+ | |||
+ | то есть имеем более точное приближение к интегралу <tex>I</tex>. | ||
+ | |||
+ | Таким образом, рекуррентную формулу можно записать в виде: | ||
+ | |||
+ | :<tex>I_{i+1}(h) = I_i(\frac{h}r) + \frac{I_i(\frac{h}r) - I_i(h)}{r^{\alpha _1} - 1} </tex> | ||
== Числовой пример == | == Числовой пример == |
Версия 06:13, 19 октября 2008
Содержание[убрать] |
Введение
Постановка математической задачи
Задача численного интегрирования состоит в приближенном нахождении значения интеграла
где
- заданная и интегрируемая на
функция. В качестве приближенного значения рассматривается число
где - числовые коэффициенты и
- точки отрезка
,
.
Приближенное равенство
называется квадратурной формулой, а сумма вида (2) - квадартурной суммой. Точки называются узлами квадратурной формулы.
Разность
называется погрешностью квадратурной формулы. Погрешность зависит как от расположения узлов, так и от выбора коэффициентов.
Изложение метода
Предположим, что для вычисления интеграла (1) отрезок разбит на
равных отрезков длины
и на каждом частичном отрезке применяется одна и та жа квадратурная формула. Тогда исходный интеграл
заменяется некоторой квадратурной суммой
, причем возникающая погрешность зависит от шага сетки
.
Для некоторых квадратурных формул удается получить разложение погрешности
по степеням
. Предположим,
что для данной квадратурной суммы
существует разложение:
,
где и коэффициенты
не зависят от
.
При этом величины
предполагаются известными.
Теперь предположим:
Чтобы избавиться от степени , составляющей ошибку (ибо среди всех слагаемых, составляющих ошибку, слагамое при
является наибольшим) вычислим величину
. Имеем:
Отсюда
то есть имеем более точное приближение к интегралу .
Таким образом, рекуррентную формулу можно записать в виде: