Участник:Goncharovalex
Материал из MachineLearning.
(→Отчет о научно-исследовательской работе) |
(→Отчет о научно-исследовательской работе) |
||
Строка 23: | Строка 23: | ||
'''Публикация''' | '''Публикация''' | ||
- | А.В.Гончаров, М.С. Попова, В. В. Стрижов Метрическая классификация временных рядов с выравниванием относительно центроидов классов // Системы и средства информатики. 2015 №4 (принята в печать). | + | А.В.Гончаров, М.С. Попова, В. В. Стрижов Метрическая классификация временных рядов с выравниванием относительно центроидов классов // Системы и средства информатики. 2015 №4 (опубликована). |
+ | |||
+ | |||
+ | '''Осень 2015, 7-й семестр''' | ||
+ | |||
+ | |||
+ | '''Метрическая классификация временных рядов со взвешенным выравниванием относительно центроидов классов.''' | ||
+ | |||
+ | В работе рассматривается задача метрического анализа и классифи- кации временных рядов. Метрические методы используют матрицу попарных рассто- яний, строящуюся при помощи фиксированной функции расстояния. Вычислительная сложность алгоритмов, использующих такую матрицу, по меньшей мере, квадратична относительно числа временных рядов. Проблема снижения вычислительной сложно- сти решается путем предварительного выделения эталонных объектов, центроидов классов, и последующего их использования для описания классов. В качестве базовой модели классификации выбрана модель, использующая динамическое выравнивание временных рядов для построения центроида. В работе предлагается ввести функцию весов центроида, влияющую на вычисление расстояния между объектами. Для анали- за алгоритма построения центроида использованы как временные ряды элементарных функций, так и временные ряды физической активности человека с акселерометра мобильного телефона. Свойства построенной модели исследуются и сравниваются со свойствами модели, выбранной в качестве базовой. | ||
+ | |||
+ | '''Публикация''' | ||
+ | |||
+ | А.В.Гончаров, В. В. Стрижов Метрическая классификация временных рядов со взвешенным выравниванием относительно центроидов классов // Информатика и ее применения. 2016 №2 (принята в печать). |
Версия 09:55, 9 января 2016
МФТИ, ФУПМ
Кафедра "Интеллектуальные системы"
Направление "Интеллектуальный анализ данных"
lyoshamipt@mail.ru
Отчет о научно-исследовательской работе
Весна 2015, 6-й семестр
Метрическая классификация временных рядов с выравниванием относительно центроидов классов.
В работе рассматривается задача многоклассовой классификации временных рядов. Классификация производится с помощью метрических методов, использующих матрицу попарных расстояний между временными рядами. Вычисление такой матрицы является трудоемким, так как ее размерность равна числу объектов выборки. С целью снижения размерности предлагается предварительно выделять эталонные объекты, а именно центроиды каждого класса, и строить матрицу попарных расстояний между объектами выборки и эталонными объектами классов. Для вычисления попарных расстояний между объектами предлагается использовать метод динамического выравнивания временных рядов. В качестве прикладной задачи рассматривается задача распознавания типа движения по данным акселерометра мобильного телефона. Метрический алгоритм классификации, исследованный в этой работе, сравнивается в точности и быстродействии с алгоритмом разделяющей классификации.
Публикация
А.В.Гончаров, М.С. Попова, В. В. Стрижов Метрическая классификация временных рядов с выравниванием относительно центроидов классов // Системы и средства информатики. 2015 №4 (опубликована).
Осень 2015, 7-й семестр
Метрическая классификация временных рядов со взвешенным выравниванием относительно центроидов классов.
В работе рассматривается задача метрического анализа и классифи- кации временных рядов. Метрические методы используют матрицу попарных рассто- яний, строящуюся при помощи фиксированной функции расстояния. Вычислительная сложность алгоритмов, использующих такую матрицу, по меньшей мере, квадратична относительно числа временных рядов. Проблема снижения вычислительной сложно- сти решается путем предварительного выделения эталонных объектов, центроидов классов, и последующего их использования для описания классов. В качестве базовой модели классификации выбрана модель, использующая динамическое выравнивание временных рядов для построения центроида. В работе предлагается ввести функцию весов центроида, влияющую на вычисление расстояния между объектами. Для анали- за алгоритма построения центроида использованы как временные ряды элементарных функций, так и временные ряды физической активности человека с акселерометра мобильного телефона. Свойства построенной модели исследуются и сравниваются со свойствами модели, выбранной в качестве базовой.
Публикация
А.В.Гончаров, В. В. Стрижов Метрическая классификация временных рядов со взвешенным выравниванием относительно центроидов классов // Информатика и ее применения. 2016 №2 (принята в печать).