Частичное обучение

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск

Дорофеев Н.Ю. (Обсуждение | вклад)
(Новая: Частичное обучение(semi-supervised lerning) — один из методов машинного обучения, использу...)
К следующему изменению →

Версия 23:29, 4 ноября 2008

Частичное обучение(semi-supervised lerning) — один из методов машинного обучения, использующий при обучении как размеченные, так и неразмеченные данные. Обычно используется небольшое количество размеченных и значительный объём неразмеченных данных. Частичное обучение является компромисом между обучением без учителя (без каких-либо размеченных обучающих данных) и обучением с учителем (с полностью размеченным набором обучения). Было замечено, что неразмеченные данные, будучи использованными совместно с небольшим количеством размеченных данных, могут обеспечить значительный прирост точности обучения. Сбор размеченных данных для задачи обучения зачастую требует, чтобы квалифицированный эксперт вручную классифицировал объекты обучения. Затраты, связанные с процессом разметки, могут сделать построение полностью размеченного набора прецедентов невозможным, в то время как сбор неразмеченных данных сравнительно недорог. В подобных ситуациях ценность частичного обучения сложно переоценить.

Примером частичного обучения может послужить сообучение: два или более обучаемых используют один и тот же набор данных, но каждый при обучении использует различные — в идеале независимые — наборы признаков объектов.

Альтернативный подход заключается в моделировании совместного распределения признаков и меток. В таком случае для неразмеченых данных метки могут трактоваться как пропущенные данные. Для построения модели максимального правдоподобия обычно используется EM-алгоритм.

Смотри также

Ссылки

Wikipedia: Semi-supervised learning

Категории

Личные инструменты