Критерий Фишера
Материал из MachineLearning.
м |
(уточнение) |
||
Строка 1: | Строка 1: | ||
{{TOCright}} | {{TOCright}} | ||
'''Критерий Фишера''' применяется для проверки равенства дисперсий двух выборок. | '''Критерий Фишера''' применяется для проверки равенства дисперсий двух выборок. | ||
+ | Его относят к ''критериям рассеяния''. | ||
- | + | При проверке гипотезы положения (гипотезы о равенстве средних значений в двух выборках) с использованием [[критерий Стьюдента|критерия Стьюдента]] имеет смысл предварительно проверить гипотезу о равенстве дисперсий. Если она верна, то для сравнения средних можно воспользоваться более [[мощность критерия|мощным]] критерием. | |
- | + | ||
В [[регрессионный анализ|регрессионном анализе]] критерий Фишера позволяет оценивать значимость линейных регрессионных моделей. | В [[регрессионный анализ|регрессионном анализе]] критерий Фишера позволяет оценивать значимость линейных регрессионных моделей. | ||
+ | В частности, он используется в [[шаговая регрессии|шаговой регрессии]] для проверки целесообразности включения или исключения независимых переменных (признаков) в регрессионную модель. | ||
- | + | В [[Дисперсионный анализ|дисперсионном анализе]] критерий Фишера позволяет оценивать значимость факторов и их взаимодействия. | |
+ | Критерий Фишера основан на дополнительных предположениях о независимости и нормальности выборок данных. | ||
+ | Перед его применением рекомендуется выполнить [[Критерии нормальности|проверку нормальности]]. | ||
+ | |||
+ | ==Примеры задач== | ||
==Описание критерия== | ==Описание критерия== | ||
Строка 30: | Строка 35: | ||
::<tex>F=\frac{s_1^2}{s_2^2}</tex> | ::<tex>F=\frac{s_1^2}{s_2^2}</tex> | ||
имеет [[распределение Фишера]] с <tex>n-1</tex> и <tex>m-1</tex> степенями свободы. | имеет [[распределение Фишера]] с <tex>n-1</tex> и <tex>m-1</tex> степенями свободы. | ||
- | |||
Обычно в числителе ставится большая из двух сравниваемых дисперсий. | Обычно в числителе ставится большая из двух сравниваемых дисперсий. | ||
Тогда [[критическая область критерия|критической областью критерия]] является правый хвост распределения Фишера, | Тогда [[критическая область критерия|критической областью критерия]] является правый хвост распределения Фишера, | ||
Строка 38: | Строка 42: | ||
*против альтернативы <tex>H_1:\; \sigma_1^2\neq\sigma_2^2</tex> | *против альтернативы <tex>H_1:\; \sigma_1^2\neq\sigma_2^2</tex> | ||
- | ::если <tex>F | + | ::если <tex>F<F_{\alpha/2}(n-1,m-1)</tex> или <tex>F>F_{1-\alpha/2}(n-1,m-1)</tex>, то нулевая гипотеза <tex>H_0</tex> |
отвергается в пользу альтернативы <tex>H_1</tex>. | отвергается в пользу альтернативы <tex>H_1</tex>. | ||
Строка 51: | Строка 55: | ||
== См. также == | == См. также == | ||
+ | * [[Критерий Стьюдента]] | ||
* [[Проверка статистических гипотез]] | * [[Проверка статистических гипотез]] | ||
* [[Статистика (функция выборки)]] | * [[Статистика (функция выборки)]] | ||
+ | * [[Нормальный дисперсионный анализ]] | ||
== Ссылки == | == Ссылки == |
Версия 19:51, 11 ноября 2008
|
Критерий Фишера применяется для проверки равенства дисперсий двух выборок. Его относят к критериям рассеяния.
При проверке гипотезы положения (гипотезы о равенстве средних значений в двух выборках) с использованием критерия Стьюдента имеет смысл предварительно проверить гипотезу о равенстве дисперсий. Если она верна, то для сравнения средних можно воспользоваться более мощным критерием.
В регрессионном анализе критерий Фишера позволяет оценивать значимость линейных регрессионных моделей. В частности, он используется в шаговой регрессии для проверки целесообразности включения или исключения независимых переменных (признаков) в регрессионную модель.
В дисперсионном анализе критерий Фишера позволяет оценивать значимость факторов и их взаимодействия.
Критерий Фишера основан на дополнительных предположениях о независимости и нормальности выборок данных. Перед его применением рекомендуется выполнить проверку нормальности.
Примеры задач
Описание критерия
Заданы две выборки .
Обозначим через и дисперсии выборок и , и — выборочные оценки дисперсий и :
- ;
- ,
где
- — выборочные средние выборок и .
Дополнительное предположение: выборки и являются нормальными. Критерий Фишера чувствителен к нарушению предположения о нормальности.
Статистика критерия Фишера:
имеет распределение Фишера с и степенями свободы. Обычно в числителе ставится большая из двух сравниваемых дисперсий. Тогда критической областью критерия является правый хвост распределения Фишера, что соотвествует альтернативной гипотезе .
Критерий (при уровне значимости ):
- против альтернативы
- если или , то нулевая гипотеза
отвергается в пользу альтернативы .
- против альтернативы
- если , то нулевая гипотеза отвергается в пользу альтернативы ;
где есть -квантиль распределения Фишера с и степенями свободы.
Литература
- Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. — 816 с.
См. также
- Критерий Стьюдента
- Проверка статистических гипотез
- Статистика (функция выборки)
- Нормальный дисперсионный анализ
Ссылки
- Распределение Фишера (Википедия).
- Критерий Фишера (Википедия).