Участник:Fedimser

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Строка 12: Строка 12:
сайт: fedimser.github.io
сайт: fedimser.github.io
 +
 +
== Отчеты о научно-исследовательской работе ==
 +
 +
=== Весна 2016, 6-й семестр===
 +
'''Смеси моделей векторной авторегрессии в задаче прогнозирования временных рядов'''
 +
 +
''В данной статье исследуется задача краткосрочного прогнозирования временных рядов. Рассматриваются временные ряды разного масштаба, связанные между собой и обладающие свойством периодичности. Задача прогнозирования сводится к задаче регрессии, которая решается с помощью линейной модели. Для повышения её точности предлагается применить композицию моделей. Композиции строятся с помощью бэггинга, метода случайных подпространств и алгоритма бустинга AdaBoost. Также предлагается эвристический итерационный алгоритм композиции моделей, основанный на идее алгоритма кластеризации K-means. С помощью предлагаемых методов производится построение прогноза потребления электроэнергии в Турции и Польше, а также цен на электроэнергию в Германии с учетом информации о погоде.''
 +
 +
 +
[http://svn.code.sf.net/p/mlalgorithms/code/Group374/Fedoriaka2016TimeSeriesPrediction/doc/Fedoriaka2016TSPPresentation.pdf?format=raw pdf]
 +
 +
 +
=== Осень 2016, 7-й семестр===
 +
'''Тематическое моделирование'''
 +
 +
''Скоро появится описание''

Версия 18:07, 15 октября 2016

Федоряка Дмитрий Сергеевич


МФТИ, ФУПМ

Кафедра "Интеллектуальные системы"

Направление "Интеллектуальный анализ данных"

e-mail: fedimser@yandex.ru

сайт: fedimser.github.io

Отчеты о научно-исследовательской работе

Весна 2016, 6-й семестр

Смеси моделей векторной авторегрессии в задаче прогнозирования временных рядов

В данной статье исследуется задача краткосрочного прогнозирования временных рядов. Рассматриваются временные ряды разного масштаба, связанные между собой и обладающие свойством периодичности. Задача прогнозирования сводится к задаче регрессии, которая решается с помощью линейной модели. Для повышения её точности предлагается применить композицию моделей. Композиции строятся с помощью бэггинга, метода случайных подпространств и алгоритма бустинга AdaBoost. Также предлагается эвристический итерационный алгоритм композиции моделей, основанный на идее алгоритма кластеризации K-means. С помощью предлагаемых методов производится построение прогноза потребления электроэнергии в Турции и Польше, а также цен на электроэнергию в Германии с учетом информации о погоде.


pdf


Осень 2016, 7-й семестр

Тематическое моделирование

Скоро появится описание

Личные инструменты