Глубинное обучение (курс лекций)
Материал из MachineLearning.
(→Расписание) |
(+ задание 1) |
||
Строка 1: | Строка 1: | ||
+ | __NOTOC__ | ||
+ | |||
Описание | Описание | ||
Строка 8: | Строка 10: | ||
== Система выставления оценок по курсу == | == Система выставления оценок по курсу == | ||
+ | В рамках курса предполагается несколько практических заданий и экзамен. Каждое задание оценивается из 5-ти баллов. За просрочку при сдаче задания начисляется штраф из расчёта 0.1 балла в день, но суммарно не более 3-х баллов. В итоговой оценке 70% составляют баллы за практические задания и 30% — оценка за экзамен. Для получения финального результата (0, 3, 4, 5) итоговая оценка по курсу округляется в большую сторону. | ||
+ | |||
+ | == Практические задания == | ||
+ | |||
+ | Задание 1. Автоматическое дифференцирование для автокодировщика ([[Media:Dl16_assignment1.pdf|формулировка]], [[Media:Dl16_assignment1_codes.zip|коды]]). Срок сдачи — '''6 ноября, 23:59'''. | ||
== Расписание == | == Расписание == |
Версия 05:16, 21 октября 2016
Описание
Преподаватели: Д.А. Кропотов, В.В. Китов, Д.П. Ветров, Е.М. Лобачёва, А. В. Артёмов.
По всем вопросам, связанным с курсом, просьба писать на bayesml@gmail.com. В название письма обязательно добавлять [ВМК ГО16].
В осеннем семестре 2016 года занятия по курсу проходят на ВМК в ауд. 582 с 10-30 до 13-50.
Система выставления оценок по курсу
В рамках курса предполагается несколько практических заданий и экзамен. Каждое задание оценивается из 5-ти баллов. За просрочку при сдаче задания начисляется штраф из расчёта 0.1 балла в день, но суммарно не более 3-х баллов. В итоговой оценке 70% составляют баллы за практические задания и 30% — оценка за экзамен. Для получения финального результата (0, 3, 4, 5) итоговая оценка по курсу округляется в большую сторону.
Практические задания
Задание 1. Автоматическое дифференцирование для автокодировщика (формулировка, коды). Срок сдачи — 6 ноября, 23:59.
Расписание
Дата | № занятия | Занятие | Материалы |
---|---|---|---|
2 сентября 2016 | 1 | Введение в курс. Стохастическая оптимизация. | Презентация |
9 сентября 2016 | 2 | Сети прямого распространения. Автоматическое дифференцирование. | |
16 сентября 2016 | 3 | Сверточные нейронные сети. | Презентация |
23 сентября 2016 | 4 | Регуляризация нейронных сетей. | Презентация |
30 сентября 2016 | 5 | Нейронные сети для компьютерного зрения. Локализация, детектирование и распознавание объектов. | Презентация |
7 октября 2016 | 6 | Визуализация слоев. Neural Style. | Презентация |
Предобработка текстов. | Презентация | ||
14 октября 2016 | 7 | Рекуррентные нейронные сети. Проблема затухающих и взрывающихся градиентов. | Презентация |
Литература
- Ian Goodfellow, Yoshua Bengio, Aaron Courville. Deep Learning, MIT Press, 2016.