Участник:Пасконова Ольга/Песочница

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Формула замены переменных в неопределенном интеграле)
(Формула замены переменных в неопределенном интеграле)
Строка 81: Строка 81:
Заметим, что для проверки результата, полученного при вычислении неопределенного интеграла, достаточно его продифференцировать, после чего должно получиться подынтегральное выражение вычисляемого иптеграла.
Заметим, что для проверки результата, полученного при вычислении неопределенного интеграла, достаточно его продифференцировать, после чего должно получиться подынтегральное выражение вычисляемого иптеграла.
 +
 +
==Формула замены переменных в определенном интеграле ==
 +
=== Квадратурные формулы интерполяционного типа ===

Версия 20:21, 22 ноября 2008

Формула замены переменных в неопределенном интеграле

Рассмотрим свойство неопределенного интеграла, часто оказывающееся полезным при вычислении первообразных элементарных функций.

Теорема.

Пусть функции  f(x) и  \phi(x) определены соответственно на промежутках  \Delta_x и  \Delta_y , причем  \phi(\Delta_t) \subset \Delta_x . Если функция  f имеет на  \Delta_x первообразную  F{x) и, следовательно,

Изображение:Q1.jpg‎ (1)

а функция  \phi(x) дифференцируема на  \Delta_t , то функция  f(\phi(t))\phi^,(t) имеет на  \Delta_t , первообразную  F(\phi(t)) и

Изображение:Q2.png‎ (2)


Формула (1) называется формулой интегрирования подстановкой, а именно подстановкой  \phi(t) = x . Это название объясняется тем, что если формулу (2) записать в виде

Изображение:Q3.png‎

то будет видно, что, для того чтобы вычислить интеграл Изображение:Q4.png‎), можно сделать подстановку  x = \phi(t) , вычислить интеграл  \int f(x) dx и затем вернуться к переменной  t , положив  x = \phi(t) .


Примеры.

1. Для вычисления интеграла  \int cos ax dx естественно сделать подстановку  u = ax , тогда

Изображение:Q5.png‎

2. Для вычисления интеграла Изображение:Q6.png‎ удобно применить подстановку  u = x^3 + a^3 :

Изображение:Q7.png‎

3. При вычислении интегралов вида Изображение:Q8.png‎ полезна подстановка  u = \phi(x) :

Изображение:Q9.png‎

Например,

Изображение:Q10.png‎

Иногда, прежде чем применить метод интегрирования подстановкой, приходится проделать более сложные преобразования подынтегральной функции:

Изображение:Q11.png‎

Отметим, что формулу (2) бывает целесообразно использовать и в обратном порядке, т.е. справа палево. Именно, иногда удобно вычисление интеграла  \int f(x) dx с помощью соответствующей замены переменного  x = \phi(t) свести к вычислению интеграла Изображение:Q12.png‎ (если этот интеграл в каком-то смысле «проще» исходного).

В случае, когда функция  \phi имеет обратную  \phi^{-1} , перейдя в обеих частях формулы (2) к переменной  x с помощью подстановки  t = \phi^{-1}(x) и поменяв местами стороны равенства, получим

Изображение:Q13.png‎

Эта формула называется обычно формулой интегрирования заменой переменной.

Для того чтобы существовала функция  \phi^{-1} , обратная  \phi , в дополнение к условиям теоремы достаточно, например, потребовать, чтобы на рассматриваемом промежутке  \Delta_t функция  \phi была строго монотонной. В этом случае, существует однозначная обратная функция  \phi^{-1} .

4. Интегралы вида Изображение:Q14.png‎ в том случае, когда подкоренное выражение неотрицательно на некотором промежутке, легко сводятся с помощью заме¬ны переменного к табличным.

Действительно, замечая, что Изображение:Q15.png‎, сделаем замену переменной Изображение:Q16.png‎ и положим Изображение:Q17.png‎. Тогда Изображение:Q18.png‎ и, в силу формулы (2), получим

Изображение:Q19.png‎

(перед  t^2 стоит знак плюс, если а > 0, и знак минус, если а < 0). Интеграл, стоящий в правой части равенства, является табличным. Найдя его по соответствующим формулам и вернувшись от переменной  t к переменной  x , получим искомый интеграл.

Подобным же приемом вычисляются и интегралы вида

Изображение:Q20.png‎

5. Интеграл Изображение:Q21.png‎ можно вычислить с помощью подстановки  x = a sin t . Имеем  dx = a cos t dt , поэтому

Изображение:Q22.png‎

Подставляя это выражение  t = arcsin \frac{x}{a} и замечая, что

Изображение:Q23.png‎

окончательно будем иметь

Изображение:Q24.png‎

Заметим, что для проверки результата, полученного при вычислении неопределенного интеграла, достаточно его продифференцировать, после чего должно получиться подынтегральное выражение вычисляемого иптеграла.

Формула замены переменных в определенном интеграле

Квадратурные формулы интерполяционного типа

Личные инструменты