Участник:Пасконова Ольга/Песочница

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Квадратурные формулы интерполяционного типа)
(Квадратурные формулы интерполяционного типа)
Строка 114: Строка 114:
Будем рассматривать формулы приближенного вычисления интегралов
Будем рассматривать формулы приближенного вычисления интегралов
 +
::[[Изображение:W1.png‎]] (3)
 +
где <tex> р(х)>0 </tex> — заданная интегрируемая функция (так называемая весовая функция) и <tex> f(x) </tex> — достаточно гладкая функция. Рассматриваемые далее формулы имеют вид
-
где р(х)>0 — заданная интегрируемая функция (так называемая весовая функция) и f(x) —достаточно гладкая функция. Рассматриваемые далее формулы имеют вид
+
::[[Изображение:W2.png‎]] (4)
-
(2)
+
 
-
к=0
+
где <tex> [x \in{a};{b}] </tex> и <tex> c_k </tex> — числа, <tex> k = 0, 1, ..., n </tex>.
-
где xfte[a, b] и ск— числа, £=0, 1, ..., п.
+
 
-
В отличие от предыдущего параграфа, не будем разбивать от¬резок [a, b] на частичные отрезки, а получим квадратурные форму¬лы путем замены f(x) интерполяционным многочленом сразу на всем отрезке [а, Ь]. Полученные таким образом формулы называ¬ются квадратурными формулами интерполяционного типа. Как пра¬вило, точность этих формул возрастает с увеличением числа узлов интерполирования. Рассмотренные в § 1 формулы прямоугольни¬ков, трапеций и Симпсона являются частными случаями квадра¬турных формул интерполяционного типа, когда п = 0, 1, 2, p(x)=sl.
+
Получим квадратурные формулы путем замены <tex> f(x) </tex> интерполяционным многочленом сразу на всем отрезке <tex> [a, b] </tex>. Полученные таким образом формулы называются ''квадратурными формулами интерполяционного типа''. Как правило, точность этих формул возрастает с увеличением числа узлов интерполирования. Формулы прямоугольников, трапеций и Симпсона являются частными случаями квадратурных формул интерполяционного типа, когда <tex> n = 0, 1, 2, p(x) = 1 </tex>.

Версия 08:59, 24 ноября 2008

Формула замены переменных в неопределенном интеграле

Рассмотрим свойство неопределенного интеграла, часто оказывающееся полезным при вычислении первообразных элементарных функций.

Теорема.

Пусть функции  f(x) и  \phi(x) определены соответственно на промежутках  \Delta_x и  \Delta_y , причем  \phi(\Delta_t) \subset \Delta_x . Если функция  f имеет на  \Delta_x первообразную  F{x) и, следовательно,

Изображение:Q1.jpg‎ (1)

а функция  \phi(x) дифференцируема на  \Delta_t , то функция  f(\phi(t))\phi^,(t) имеет на  \Delta_t , первообразную  F(\phi(t)) и

Изображение:Q2.png‎ (2)


Формула (1) называется формулой интегрирования подстановкой, а именно подстановкой  \phi(t) = x . Это название объясняется тем, что если формулу (2) записать в виде

Изображение:Q3.png‎

то будет видно, что, для того чтобы вычислить интеграл Изображение:Q4.png‎), можно сделать подстановку  x = \phi(t) , вычислить интеграл  \int f(x) dx и затем вернуться к переменной  t , положив  x = \phi(t) .


Примеры.

1. Для вычисления интеграла  \int cos ax dx естественно сделать подстановку  u = ax , тогда

Изображение:Q5.png‎

2. Для вычисления интеграла Изображение:Q6.png‎ удобно применить подстановку  u = x^3 + a^3 :

Изображение:Q7.png‎

3. При вычислении интегралов вида Изображение:Q8.png‎ полезна подстановка  u = \phi(x) :

Изображение:Q9.png‎

Например,

Изображение:Q10.png‎

Иногда, прежде чем применить метод интегрирования подстановкой, приходится проделать более сложные преобразования подынтегральной функции:

Изображение:Q11.png‎

Отметим, что формулу (2) бывает целесообразно использовать и в обратном порядке, т.е. справа палево. Именно, иногда удобно вычисление интеграла  \int f(x) dx с помощью соответствующей замены переменного  x = \phi(t) свести к вычислению интеграла Изображение:Q12.png‎ (если этот интеграл в каком-то смысле «проще» исходного).

В случае, когда функция  \phi имеет обратную  \phi^{-1} , перейдя в обеих частях формулы (2) к переменной  x с помощью подстановки  t = \phi^{-1}(x) и поменяв местами стороны равенства, получим

Изображение:Q13.png‎

Эта формула называется обычно формулой интегрирования заменой переменной.

Для того чтобы существовала функция  \phi^{-1} , обратная  \phi , в дополнение к условиям теоремы достаточно, например, потребовать, чтобы на рассматриваемом промежутке  \Delta_t функция  \phi была строго монотонной. В этом случае, существует однозначная обратная функция  \phi^{-1} .

4. Интегралы вида Изображение:Q14.png‎ в том случае, когда подкоренное выражение неотрицательно на некотором промежутке, легко сводятся с помощью заме¬ны переменного к табличным.

Действительно, замечая, что Изображение:Q15.png‎, сделаем замену переменной Изображение:Q16.png‎ и положим Изображение:Q17.png‎. Тогда Изображение:Q18.png‎ и, в силу формулы (2), получим

Изображение:Q19.png‎

(перед  t^2 стоит знак плюс, если а > 0, и знак минус, если а < 0). Интеграл, стоящий в правой части равенства, является табличным. Найдя его по соответствующим формулам и вернувшись от переменной  t к переменной  x , получим искомый интеграл.

Подобным же приемом вычисляются и интегралы вида

Изображение:Q20.png‎

5. Интеграл Изображение:Q21.png‎ можно вычислить с помощью подстановки  x = a sin t . Имеем  dx = a cos t dt , поэтому

Изображение:Q22.png‎

Подставляя это выражение  t = arcsin \frac{x}{a} и замечая, что

Изображение:Q23.png‎

окончательно будем иметь

Изображение:Q24.png‎

Заметим, что для проверки результата, полученного при вычислении неопределенного интеграла, достаточно его продифференцировать, после чего должно получиться подынтегральное выражение вычисляемого иптеграла.

Формула замены переменных в определенном интеграле

Теорема.

Пусть функция  f(x) непрерывна на отрезке  [a'; b'] , а функция  \phi(t) имеет непрерывную производную  \phi'(t) на отрезке  [\alpha; \beta] , причём все значения  x = \phi(t) при  [t \in{\alpha};{\beta}] принадлежат отрезку  [a'; b'] , в том числе  \phi(\alpha) = a и  \phi(\beta) = b . Тогда имеет место равенство

Изображение:Img1.png‎

Замечание.

Заметим, что доказанная формула, в отличие от формулы замены переменной в неопределённом интеграле, даёт нам возможность после перехода к интегралу от функции новой переменной  x не возвращаться к исходному интегралу от функции переменной  t . После того, как замена сделана, мы можем "забыть", как выглядел исходный интеграл, и продолжать преобразования интеграла от функции новой переменной. Именно на том, что к старой переменной возвращаться не приходится, мы и получаем экономию усилий при применении формулы замены переменной в определённом интеграле, по сравнению с тем, что получилось бы, если бы мы просто нашли первообразную и применили формулу Ньютона - Лейбница.

Обратим ваше внимание на важную особенность формулы: кроме подынтегрального выражения, при замене переменной меняются и пределы интегрирования. Действительно, в интеграле по новой переменной  x должны быть указаны пределы изменения именно  x (то есть  a и  b ), в то время как в исходном интеграле по переменной  t указаны пределы изменения  t (то есть  \alpha и  \beta ).

Советы о том, какая замена целесообразна для вычисления того или иного интеграла, - те же самые, что и при вычислении неопределённых интегралов, так что тут ничего нового изучать не придётся.

Пример.

Вычислим интеграл

Изображение:Img2.png‎

Для этого сделаем замену  x = \phi(t) = \sin t , откуда  dx = \phi'(t)dt = \cos t dt. Кроме того, при  t = 0 имеем  x = \sin 0 = 0 , а при  t = \frac{\pi}{2} имеем  x = \sin \frac{\pi}{2} = 1 . Получаем:

Изображение:Img2.png‎


Квадратурные формулы интерполяционного типа

Будем рассматривать формулы приближенного вычисления интегралов

Изображение:W1.png‎ (3)

где  р(х)>0 — заданная интегрируемая функция (так называемая весовая функция) и  f(x) — достаточно гладкая функция. Рассматриваемые далее формулы имеют вид

Изображение:W2.png‎ (4)

где  [x \in{a};{b}] и  c_k — числа,  k = 0, 1, ..., n .

Получим квадратурные формулы путем замены  f(x) интерполяционным многочленом сразу на всем отрезке  [a, b] . Полученные таким образом формулы называются квадратурными формулами интерполяционного типа. Как правило, точность этих формул возрастает с увеличением числа узлов интерполирования. Формулы прямоугольников, трапеций и Симпсона являются частными случаями квадратурных формул интерполяционного типа, когда  n = 0, 1, 2, p(x) = 1 .

Личные инструменты