Методы исключения Гаусса
Материал из MachineLearning.
(→Способы оценки ошибок) |
(→Способы оценки ошибок) |
||
Строка 104: | Строка 104: | ||
:<tex>\left( \alpha A\right)x' = \beta b</tex>, где <tex>\alpha</tex> и <tex>\beta</tex> - числа | :<tex>\left( \alpha A\right)x' = \beta b</tex>, где <tex>\alpha</tex> и <tex>\beta</tex> - числа | ||
- | Если бы не было погрешности округления, то выполнялось бы равенство для решений исходной и масштабированной систем: <tex>x=\alpha \beta^{-1}x'</tex>. Поэтому при <tex>\alpha</tex> и <tex>\beta</tex>, не являющихся степенями двойки, сравнение векторов <tex>x</tex> и <tex>\ | + | Если бы не было погрешности округления, то выполнялось бы равенство для решений исходной и масштабированной систем: <tex>x=\alpha \beta^{-1}x'</tex>. Поэтому при <tex>\alpha</tex> и <tex>\beta</tex>, не являющихся степенями двойки, сравнение векторов <tex>x</tex> и <tex>\alpha \beta^{-1}x'</tex> дает представление о величине вычислительной погрешности <ref>Например, можно взять <tex>\alpha=\sqrt{2}, \quad \beta=\sqrt{3}</tex></ref> |
== Улучшение метода исключения Гаусса== | == Улучшение метода исключения Гаусса== |
Версия 17:30, 5 декабря 2008
Содержание |
Постановка задачи
Дана система линейных алгебраических уравнений (СЛАУ), состоящая из уравнений с неизвестными :
Предполагается, что существует единственное решение системы, то есть .
В данной статье будут рассмотрены причины погрешности, возникающей во время решения системы с помощью метода Гаусса, способы выявления и ликвидации(уменьшения) этой погрешности.
Описание метода
Процесс решения системы линейных уравнений
по методу Гаусса состоит из 2х этапов:
- Прямой ход
- Система (2) приводится к треугольному виду
- 1. Предполагаем, что . Тогда первое уравнение системы (2) делим на коэффициент , в результате получаем уравнение
- Затем из каждого из оставшихся уравнений вычитается первое, умноженное на соответствующий коэффициент . В результате система преобразуются к виду:
- 2. В предположении, что , делим второе уравнение на коэффициент и исключаем неизвестное из всех последующих уравнений и т.д.
- 3. Получаем систему уравнений с треугольной матрицей:
- Обратный ход
- Непосредственное определение неизвестных
- 1. Из го уравнения системы (3) определяем
- 2. Из го - определяем и т.д.
Анализ метода
Данный метод относится к классу прямых методов решения системы уравнений, а это значит, что за конечное число шагов можно получить точное решение, при условии, что входные данные ( матрица и правая часть уравнения - ) заданы точно и вычисление ведется без округлений. Для получения решения требуется умножений и делений, то есть порядка операций.
Условия, при которых метод выдает точное решение, на практике не выполнимы - неизбежны как ошибки входных данных, так и ошибки округления. Тогда встает вопрос: насколько точное решение можно получить, используя метод Гаусса, насколько метод корректен? Определим устойчивость решения относительно входных параметров. Наряду с исходной системой (1) рассмотрим возмущенную систему:
Пусть введена некоторая норма . - называется числом обусловленности матрицы .
Возможны 3 случая:
1) :
2) :
3) :
Число обусловленности матрицы всегда . Если оно велико ( ) , то говорят, что матрица плохо обусловлена. В этом случае малые возмущения правых частей системы (1), вызванные либо неточностью задания исходных данных, либо вызванные погрешностями вычисления, существенно влияют на решение системы. Грубо говоря, если погрешность правых частей , то погрешность решения будет .
Проиллюстрируем полученные результаты на следующем числовом примере: Дана система
Она имеет решение .
Теперь рассмотрим возмущенную систему:
Решением такой системы будет вектор .
При совсем малом возмущении правой части получили несоизмеримо большое возмущение решения. Объяснить такую "ненадежность" решения можно тем, что матрица почти вырожденная: прямые, соответствующие двум уравнениям, почти совпадают, что видно на графике:
Такой результат можно было предвидеть в силу плохой обусловленностью матрицы : [1]
Вычисление является достаточно сложным, сравнимо с решением всей системы, поэтому для оценки пограшности применяются более грубые, но простые в реализации методы.
Способы оценки ошибок
- 1) Контрольная сумма: обычно применяется для предупреждения случайных погрешностей в процессе вычисления без помощи компьютеров.
Составляем контрольный столбец , состоящий из контрольных элементов системы:
При преобразовании уравнений над контрольными элементами производятся те же операции, что и над свободными членами уравнеий. В результате этого контрольный элемент каждого нового уравнения должен равняться сумме коэффициентов этого уравнения. Большое расхождение между ними указывает на погрешности в вычислениях или на неустойчивость алгоритма вычислений по отношению к вычислительной погрешности.
- 2) Относительная погрешность известного решения позволяет без существенных дополнительных затрат получить суждение о погрешности решения.
Задается некоторый ветор с компонентами, имеющими по возможности тот же порядок и знак, что и компоненты искомого решения [1]. Вычисляется вектор , и на ряду с исходной системой уравнения решается система .
Пусть и - реально получаемые решения этих систем. Суждение о погрешности искомого решения можно получить, основываясь на гипотезе: относительные погрешности при решении методом исключения систем с одной и той же матрицей и различными правыми частями, которыми являются соответственно величины и , отличаются не в очень большое число раз.
- 3) Изменение масштабов - прием, применяющийся для получения представления о реальной величине погрешности, возникающей за счет округлений при вычислениях.
Наряду с исходной системой тем же методом решается система
- , где и - числа
Если бы не было погрешности округления, то выполнялось бы равенство для решений исходной и масштабированной систем: . Поэтому при и , не являющихся степенями двойки, сравнение векторов и дает представление о величине вычислительной погрешности [1]
Улучшение метода исключения Гаусса
Выбор главного элемента
Итеративное улучшение результата
Программа, реализующая метод на C++
Рекомендации программисту
Список литературы
- Н.С.Бахвалов, Н.П.Жидков, Г.М.Кобельков Численные методы