Критерий хи-квадрат

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Определение)
(Определение)
Строка 23: Строка 23:
<tex>E_j = np_j</tex> Ожидаемое число попаданий в j-ый интервал;
<tex>E_j = np_j</tex> Ожидаемое число попаданий в j-ый интервал;
-
'''Статистика:''' <tex>\chi^2 = \sum_{i=1}^k \frac{ \left( n_j-E_j \right)^2}{E_j} \sim \chi_{k-1}^2</tex> - [[Распределение <tex>\chi^2</tex>|Распределение <tex>\chi^2</tex>|]] с k-1 степенью свободы.
+
'''Статистика:''' <tex>\chi^2 = \sum_{i=1}^k \frac{ \left( n_j-E_j \right)^2}{E_j} \sim \chi_{k-1}^2</tex> - [[Распределение хи-квадрат|Распределение хи-квадрат]] с k-1 степенью свободы.
Критерий <tex>\chi^2</tex> - наиболее часто используемый статистический критерй для проверки гипотезы <tex> H_0</tex>, что наблюдаемая случайная величина подчиняется некому теоретическому закону распределению.
Критерий <tex>\chi^2</tex> - наиболее часто используемый статистический критерй для проверки гипотезы <tex> H_0</tex>, что наблюдаемая случайная величина подчиняется некому теоретическому закону распределению.

Версия 10:33, 7 декабря 2008

Содержание

Статья в настоящий момент дорабатывается.
Венжега Андрей 00:08, 14 ноября 2008 (MSK)


Определение

Пусть дана случайная величина X .

Гипотеза  H_0 : с. в. X подчиняется закону распределения F(x).


Для проверки гипотезы рассмотрим выборку, состоящую из n независимых наблюдений над с.в. X: X^n = \left( x_1, \cdots \x_n \right), \; x_i \in \left[ a, b \right], \; \forall i=1 \dots n . По выборке построим эмпирическое распределение F^*(x) с.в X. Сравнение эмпирического F^*(x) и теоретического распределения F(x) производится с помощью специально подобранной случайной величины — критерия согласия. Рассмотрим критерий согласия Пирсона (критерий \chi^2):


Гипотеза  H_0^* : Хn порождается функцией F^*(x).

Разделим [a,b] на k непересекающихся интервалов  (a_i, b_i], \; i=1 \dots k;

Пусть n_j - количество наблюдений в j-м интервале:  n_j = \sum_{i=1}^n \left[ a_i <x \leq b_i \right] ;

p_j = F(b_j)-F(a_j) - вероятность попадания наблюдения в j-ый интервал при выполнении гипотезы  H_0^* ;

E_j = np_j Ожидаемое число попаданий в j-ый интервал;

Статистика: \chi^2 = \sum_{i=1}^k \frac{ \left( n_j-E_j \right)^2}{E_j} \sim \chi_{k-1}^2 - Распределение хи-квадрат с k-1 степенью свободы.

Критерий \chi^2 - наиболее часто используемый статистический критерй для проверки гипотезы  H_0, что наблюдаемая случайная величина подчиняется некому теоретическому закону распределению.

Проверка гипотезы

  • гипотеза неслучайности
  • гипотеза случайности
  • гипотеза согласия

Сложная гипотеза

Теорема Фишера

Литература

Ссылки

[Критерий хи-квадрат (en.wiki)]

Личные инструменты