ARIMA

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Новая: '''Авторегрессионное интегрированное скользящее среднее''' (autoregressive integrated moving average, ARIMA) является обобщ...)
м (викификация)
Строка 1: Строка 1:
-
'''Авторегрессионное интегрированное скользящее среднее''' (autoregressive integrated moving average, ARIMA) является обобщением модели авторегрессионного скользящего среднего.
+
'''Авторегрессионное интегрированное скользящее среднее''' (autoregressive integrated moving average, ARIMA) является обобщением модели [[Авторегрессионное скользящее среднее|авторегрессионного скользящего среднего]].
-
Эти модели используются при работе с временными рядами для более глубокого понимания данных или предсказания будущих точек ряда.
+
Эти модели используются при работе с [[временной ряд|временными рядами]] для более глубокого понимания данных или предсказания будущих точек ряда.
Обычно модель упоминается, как ARIMA(<i>p,d,q</i>), где <i>p,d</i> и <i>q</i> — целые неотрицательные числа, характеризующие порядок для частей модели (соответственно авторегрессионной, интегрированной и скользящего среднего).
Обычно модель упоминается, как ARIMA(<i>p,d,q</i>), где <i>p,d</i> и <i>q</i> — целые неотрицательные числа, характеризующие порядок для частей модели (соответственно авторегрессионной, интегрированной и скользящего среднего).
Строка 19: Строка 19:
Например, ARIMA(0,1,0), задающая <br />
Например, ARIMA(0,1,0), задающая <br />
::<tex>X_t = X_{t-1} + \epsilon_t</tex>, <br />
::<tex>X_t = X_{t-1} + \epsilon_t</tex>, <br />
-
является моделью случайных блужданий.
+
является моделью [[случайное блуждание|случайных блужданий]].
Используется большое количество вариаций модели ARIMA.
Используется большое количество вариаций модели ARIMA.
Строка 35: Строка 35:
*[[Временной ряд]]
*[[Временной ряд]]
*[[Автокорреляция]]
*[[Автокорреляция]]
 +
*[[Случайное блуждание]]
== Ссылки ==
== Ссылки ==

Версия 15:19, 8 декабря 2008

Авторегрессионное интегрированное скользящее среднее (autoregressive integrated moving average, ARIMA) является обобщением модели авторегрессионного скользящего среднего. Эти модели используются при работе с временными рядами для более глубокого понимания данных или предсказания будущих точек ряда. Обычно модель упоминается, как ARIMA(p,d,q), где p,d и q — целые неотрицательные числа, характеризующие порядок для частей модели (соответственно авторегрессионной, интегрированной и скользящего среднего).

Пусть задан временной ряд X_t, где t — целый индекс и X_t — вещественные числа. Тогда модель ARMA(p,q) задаётся следующем образом:

\left(1-\sum_{i=1}^p \phi_i L^i\right) X_t = \left(1+\sum_{i=1}^q \tetha_i L^i\right) \epsilon_t,

где L — оператор задержки, \phi_i — параметры авторегрессионной части модели, \tetha_i — параметры скользящего среднего, а \epsilon_t — значения ошибки. Обычно предполагают, что ошибки \epsilon_t являются независимыми одинаково распределёнными случайными величинами из нормального распределения с нулевым средним.

ARIMA(p,d,q) получается интегрированием ARMA(p,q).

\left(1-\sum_{i=1}^p \phi_i L^i\right) (1-L)^d X_t = \left(1+\sum_{i=1}^q \tetha_i L^i\right) \epsilon_t,

где d — положительное целое, задающее уровень дифференцирования (если d=0, эта модель эквивалентна авторегрессионному скользящему среднему). И наоборот, применяя почленное дифференцирование d раз к модели ARMA(p,q), получим модель ARIMA(p,d,q). Заметим, что дифференцировать надо только авторегрессионную часть.

Важно отметить, что не все сочетания параметров дают «хорошую» модель. В частности, чтобы получить стационарную модель требуется выполнение некоторых условий.

Существует несколько известных частных случаев модели ARIMA. Например, ARIMA(0,1,0), задающая

X_t = X_{t-1} + \epsilon_t,

является моделью случайных блужданий.

Используется большое количество вариаций модели ARIMA. Например, если исследуются несколько рядов, то X_t можно трактовать как векторы. Тогда мы приходим к модели VARIMA. Иногда в модели может иметься сезонный фактор. Примером может послужить модель объёма трафика за день. На выходных поведение ряда будет заметно отличаться от рабочих дней. В этом случае вместо того, чтобы наращивать порядки скользящего среднего и авторегрессионной части модели, лучше прибегнуть к модели сезонного авторегрессионного скользящего среднего (SARIMA). Если имеется некоторая долгосрочная зависимость, параметр d может быть заменён нецелыми значениями, приводя к авторегрессионному дробноинтегрированному процессу скользящего среднего (FARIMA или ARFIMA).

См. также

Ссылки

Личные инструменты