Нейросеть

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск

Alina (Обсуждение | вклад)
(Новая: ==Нейросеть== ===Однослойная нейросеть=== Модель МакКаллока–Питтса. Пусть X � пространство объектов; Y ...)
К следующему изменению →

Версия 19:43, 17 декабря 2008

Содержание

Нейросеть

Однослойная нейросеть

Модель МакКаллока–Питтса. Пусть X � пространство объектов; Y � множество допустимых ответов; y∗ : X → Y � целевая зависимость, известная только на объек- тах обучающей выборки Xℓ = (xi, yi)ℓi=1, yi = y∗(xi). Требуется построить алгоритм a: X → Y , аппроксимирующий целевую зависимость y∗ на всём множестве X. Будем предполагать, что объекты описываются n числовыми признаками fj : X → R, j = 1, . . . , n. Вектор (f1(x), . . . , fn(x))∈ Rn называется признаковым описанием объекта x.

Модель МакКаллока и Питтса

Алгоритм принимает на вход вектор x=(x^1,\dots,x^n). Для простоты полагаем все признаки бинарными. Каждому нейрону соответствует вектор весов w=(w_1,w_2,\dota,w_n). вектор признаков скалярно перемножается с вектором весов. Если результат превышает 'порог активации', результат работы нейрона равен 1, иначе 0.

a(x)=\phi(\sum^n_j=1)

Многослойная нейросеть

Личные инструменты