Критерий Чоу

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск

Елена Корнилина (Обсуждение | вклад)
(Новая: Тест Чоу позволяет оценить значимость улучшения регрессионной модели после разделения исходной выб...)
К следующему изменению →

Версия 17:50, 7 января 2009

Тест Чоу позволяет оценить значимость улучшения регрессионной модели после разделения исходной выборки на части.

Содержание

Постановка задачи

Основной задачей в этом разделе является обнаружение структурных изменений.

Пусть на временном интервале [T_1;T_3] прогноз для момента t по уже полученным данным y_t имеет следующий вид:

\hat{y}_t=\sum_{j=1}^kf_j(t)\alpha_j

f_j(t) - признаки (информация), по которым строится прогноз на момент времени t, т.е. могут быть определены только до t-1го момента

Выделим внутри рассматриваемого временного интервала момент T_2. Пусть прогноз на отрезке

[T_1;T_2]:\; \hat{y}_{1t}=\sum_{j=1}^{k_1}f_{1j}(t)\alpha_{1j};
[T_2;T_3]:\; \hat{y}_{2t}=\sum_{j=1}^{k_2}f_{2j}(t)\alpha_{2j}

Определим, насколько же необходимо менять модель в момент времени T_2.

Описание критерия Чоу

Пусть \vareps_{1t}=\hat{y}_{1t}-y_t,\; \vareps_{2t}=\hat{y}_{2t}-y_t.
Будем считать, что \vareps_{1t},\; \vareps_{2t} распределены нормально с одними и теми же параметрами.

Нулевая гипотеза

Сформулируем нулевую гипотезу:

H_0:\; структура стабильна


(разбиение на две модели не способствовало лучшему прогнозированию)

Статистика Чоу

Будем использовать следующие обозначения:

Статистика Чоу:

F(T_2)=\frac{RSS-\bigl(RSS_1+RSS_2\bigr)}{RSS_1+RSS_2}\cdot\frac{n-k_1+k_2}{k_1+k_2-k}

n=T_3-T_1+1

Статистика Чоу имеет распределение Фишера с k_1+k_2-k и n-k_1-k_2 степенями свободы.

Критическая область

Для критерия Чоу критическая область при уровне значимости \alpha - это область

\Omega_{\alpha}:\; F(T_2)>F_{k_1+k2-k,n-k_1-k_2,\alpha}

где F_{k_1+k2-k,n-k_1-k_2,\alpha} - квантиль Фишера.

Если гипотеза H_0 отвергается, то необходимо использовать две модели.

Примечание

Если момент времени T_2 неизвестен, то рекомендуется следующее значение:

T_2=\arg\max\limits_{T_2}F(T_2)


Литература

Лукашин Ю. П. Адаптивные методы краткосрочного прогнозирования временных рядов.. — М.: Финансы и статистика, 2003. — 416 с. — ISBN 5-279-02740-5

См. также

Ссылки

Личные инструменты