Байесовские методы машинного обучения (Спецсеминар)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск

Dmitry Vetrov (Обсуждение | вклад)
(Новая: = Спецсеминар «Байесовские методы машинного обучения» (рук. к.ф.-м.н. Д.П. Ветров, Д.А. Кропотов) = Семинар...)
К следующему изменению →

Версия 15:49, 15 сентября 2009

Содержание

Спецсеминар «Байесовские методы машинного обучения» (рук. к.ф.-м.н. Д.П. Ветров, Д.А. Кропотов)

Семинар проводится для студентов каф. ММП, ф-та ВМК МГУ, но открыт для всех желающих. Основным направлением работы семинара является исследование и применение т.н. байесовского подхода к теории вероятностей в решении задач машинного обучения и компьютерного зрения. Байесовские методы получили большое распространение в мире в течение последних 15 лет. Их основными достоинствами является возможность автоматической настройки структурных параметров алгоритмов машинного обучения (выбор количества кластеров, определение коэффициента регуляризации, отбор релевантных признаков и объектов, определение топологии нейросети и пр.); корректная работа с фактами, достоверность которых точно неизвестна, позволяющая обобщить методы классической булевой логики на ситуации, содержащие значительный элемент неопределенности, которая позволяет успешно применить байесовские методы в экспертных системах; возможность учета структурных и вероятностных взаимосвязей в массивах данных, опирающаяся на активно развиваемый в настоящее время аппарат графических моделей; представление данных и настраиваемых параметров, позволяющее объединять результаты наблюдений косвенных показателей неизвестной величины с априорными представлениями о ее характерных значениях. Участники спецсеминара активно участвуют в теоретической работе по разработке новых методов настройки структурных параметров и алгоритмов машинного обучения для нестандартных задач, а также занимаются прикладными исследованиями в области когнитивных технологий.

Методическая поддержка спецсеминара осуществляется спецкурсами «Байесовские методы машинного обучения» и «Структурные методы анализа изображений и сигналов», читаемых на факультете ВМК.

Прикладные проекты

Построение трехмерной модели мозга мыши и статистический анализ экспрессии генов в мозге

Множественный трекинг лабораторных животных

Определение поведенческих актов животного по данным видеонаблюдения

Нахождение скрытых закономерностей в поведении

Анализ изображений клеточных структур

Теоретическая работа

Непрерывное обобщение информационного критерия Акаике в задачах регрессии и классификации

Недиагональная регуляризация обобщенных линейных моделей

Автоматическое определение числа кластеров в алгоритме разделения гауссовской смеси