Публикация:Gorban (2008), Principal Manifolds

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
м (оформление)
м (оформление)
Строка 1: Строка 1:
<includeonly>{{Монография|PageName = П:A. Gorban, B. Kegl, D. Wunsch, A. Zinovyev (2008), Principal Manifolds for Data Visualisation and Dimension Reduction
<includeonly>{{Монография|PageName = П:A. Gorban, B. Kegl, D. Wunsch, A. Zinovyev (2008), Principal Manifolds for Data Visualisation and Dimension Reduction
|автор = Gorban, A.N.
|автор = Gorban, A.N.
-
|автор2 = Kegl, B
+
|автор2 = Kegl, B.
-
|автор3 = Wunsch, D
+
|автор3 = Wunsch, D.
|автор4 = Zinovyev, A.Y.
|автор4 = Zinovyev, A.Y.
|название = Principal Manifolds for Data Visualisation and Dimension Reduction
|название = Principal Manifolds for Data Visualisation and Dimension Reduction
Строка 11: Строка 11:
|язык = english
|язык = english
}}</includeonly><noinclude>{{Монография|BibtexKey = NPCA2007
}}</includeonly><noinclude>{{Монография|BibtexKey = NPCA2007
-
|автор = Gorban, A.N. (Ed.)
+
|автор = Gorban, A.N.
-
|автор2 = Kegl, B (Ed.)
+
|автор2 = Kegl, B.
-
|автор3 = Wunsch, D (Ed.)
+
|автор3 = Wunsch, D.
-
|автор4 = Zinovyev, A.Y. (Ed.)
+
|автор4 = Zinovyev, A.Y.
|название = Principal Manifolds for Data Visualisation and Dimension Reduction
|название = Principal Manifolds for Data Visualisation and Dimension Reduction
|издатель = Springer, Berlin – Heidelberg – New York
|издатель = Springer, Berlin – Heidelberg – New York
Строка 102: Строка 102:
[[Категория:Машинное обучение (публикации)]]
[[Категория:Машинное обучение (публикации)]]
</noinclude>
</noinclude>
-
}}
 

Версия 14:18, 26 сентября 2009

Gorban, A.N., Kegl, B., Wunsch, D., Zinovyev, A.Y. Principal Manifolds for Data Visualisation and Dimension Reduction. — Springer, Berlin – Heidelberg – New York, 2008. — ISBN 978-3-540-73749-0

BibTeX:
 @book{NPCA2007,
   author = "Gorban, A.N. and Kegl, B. and Wunsch, D. and Zinovyev, A.Y.",
   title = "Principal Manifolds for Data Visualisation and Dimension Reduction",
   publisher = "Springer, Berlin – Heidelberg – New York",
   year = "2008",
   url = "http://pca.narod.ru/contentsgkwz.htm",
   isbn = "978-3-540-73749-0",
   language = english
 }

Аннотация

Первая в мировой научной литературе монография, посвященная методу главных многообразий (обобщения Кохоненовских SOM в том числе): Главные многообразия для визуализации и анализа данных, А. Горбань, Б. Кегль, Д. Вунш, А. Зиновьев (ред.), Шпрингер, 2007. Подготовлена международным коллективом авторов.


Contents

1 Developments and Applications of Nonlinear Principal Component Analysis – a Review

Uwe Kruger, Junping Zhang, Lei Xie


2 Nonlinear Principal Component Analysis: Neural Network Models and Applications

Matthias Scholz, Martin Fraunholz, Joachim Selbig


3 Learning Nonlinear Principal Manifolds by Self-Organising Maps

Hujun Yin


4 Elastic Maps and Nets for Approximating Principal Manifolds and Their Application to Microarray Data visualization

Alexander N Gorban, Andrei Y Zinovyev


5 Topology-Preserving Mappings for Data Visualisation

Marian PeЇna, Wesam Barbakh, Colin Fyfe


6 The Iterative Extraction Approach to Clustering

Boris Mirkin


7 Representing Complex Data Using Localized Principal Components with Application to Astronomical Data

Jochen Einbeck, Ludger Evers, Coryn Bailer-Jones


8 Auto-Associative Models, Nonlinear Principal Component Analysis, Manifolds and Projection Pursuit

Stґephane Girard, Serge Iovleff


9 Beyond The Concept of Manifolds: Principal Trees, Metro Maps, and Elastic Cubic Complexes

Alexander N Gorban, Neil R Sumner, Andrei Y Zinovyev


10 Diffusion Maps - a Probabilistic Interpretation for Spectral Embedding and Clustering Algorithms

Boaz Nadler, Stephane Lafon, Ronald Coifman, Ioannis G Kevrekidis


11 On Bounds for Diffusion, Discrepancy and Fill Distance Metrics

Steven B Damelin

12 Geometric Optimization Methods for the Analysis of Gene Expression Data

Michel Journґee, Andrew E Teschendorff, Pierre-Antoine Absil, Simon Tavarґe, Rodolphe Sepulchre


13 Dimensionality Reduction and Microarray data

David A Elizondo, Benjamin N Passow, Ralph Birkenhead, Andreas Huemer


14 PCA and K-Means Decipher Genome

Alexander N Gorban, Andrei Y Zinovyev


Ссылки

Личные инструменты