Участник:Oleg Bakhteev

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Осень 2015, 11 семестр)
(Осень 2015, 11 семестр)
Строка 31: Строка 31:
== Осень 2015, 11 семестр ==
== Осень 2015, 11 семестр ==
-
'''Использование графического процессора для глубокого обучения искусственных нейросетей в задаче классификации временных рядов'''<br/>
+
'''Системы и средства глубокого обучения в задачах классификации'''<br/>
В работе рассматривается задача классификации временных рядов, т.е. упорядоченных по времени измерений некоторой величины. Рассматривается алгоритм классификации, основанный на искусственных нейросетях глубокого обучения, где под глубоким обучением понимается суперпозиция моделей. В качестве исследуемой структуры сети рассматривается композиция ограниченной машины Больцмана, автокодировщика и softmax-сети. Исследуется возможность обучения нейронной сети на процессоре графического ускорителя. Проводится анализ зависимости ошибки классификации от количества параметров и размера обучающей выборки.<br/>
В работе рассматривается задача классификации временных рядов, т.е. упорядоченных по времени измерений некоторой величины. Рассматривается алгоритм классификации, основанный на искусственных нейросетях глубокого обучения, где под глубоким обучением понимается суперпозиция моделей. В качестве исследуемой структуры сети рассматривается композиция ограниченной машины Больцмана, автокодировщика и softmax-сети. Исследуется возможность обучения нейронной сети на процессоре графического ускорителя. Проводится анализ зависимости ошибки классификации от количества параметров и размера обучающей выборки.<br/>

Версия 19:57, 8 апреля 2018

Бахтеев Олег Юрьевич
МФТИ, ФУПМ
Кафедра «Интеллектуальные системы»
Направление «Интеллектуальный анализ данных»
bakhteev@phystech.edu


Весна 2014, 8 семестр

Восстановление панельной матрицы и ранжирующей модели по метризованной выборке в разнородных шкалах
Работа посвящена восстановлению ежегодных изменений рейтингов студентов при собеседовании в учебный центр. Рассматривается выборка, состоящая з экспертных оценок студентов, проходивших собеседование в учебный центр в течение нескольких лет и итоговых рейтингов студентов. Шкалы экспертных оценок меняются из года в год, но шкала рейтингов остается неизменной. Требуется восстановить ранжирующую модель, не зависящую от времени. Задача сводится к восстановлению панельной матрицы (то есть матрицы объект–признак–год), ставящей во взаимное соответствие некоторого студента (или усредненный “портрет” студента) и его предполагаемую оценку на собеседованиях за каждый год, и исследованию ранжирующей модели, полученной на основе этой матрицы, а так же анализу ее устойчивости на протяжении нескольких лет. Предлагается метод восстановления панельной матрицы, основанный на решении многомерной задачи о назначениях. В качестве метода восстановления ранжирующей модели используется алгоритм многоклассовой классификации с отношением полного порядка на классах и алгоритм ранжирования, основанный на методе опорных векторов.
Публикация
Бахтеев О. Ю. Восстановление панельной матрицы и ранжирующей модели по метризованной выборке в разнородных шкалах // Машинное обучение и анализ данных, 2015. T. 1. № 14. C. 1939-1960. [1]

Доклад на конференции
57-ая конференция МФТИ: доклад "Восстановление панельной матрицы и ранжирующей модели в разнородных шкалах"

Осень 2014, 9 семестр

Восстановление пропущенных значений в разнородных шкалах с большим числом пропусков
Рассматривается задача восстановления пропущенных значений в выборках, содер- жащих значительное число пропусков. Вводится понятие устойчивости восстановления пропуска, а также исследуется возможность применимости подхода для восстановления пропущенных значений. Исследуется случай, когда восстановление производится по k бли- жайшим соседям. Рассматриваются теоретические аспекты применимости данного под- хода для сильно разреженных данных. Рассматривается вариант восстановления пропу- щенных значений с использованием восстановленных значений в качестве источника для восстановления других элементов.


Публикация
Бахтеев О.И. Восстановление пропущенных значений в разнородных шкалах с большим числом пропусков // Машинное обучение и анализ данных. 2015. T. 1, №11. C. 1484 - 1499. PDF

Осень 2015, 11 семестр

Системы и средства глубокого обучения в задачах классификации
В работе рассматривается задача классификации временных рядов, т.е. упорядоченных по времени измерений некоторой величины. Рассматривается алгоритм классификации, основанный на искусственных нейросетях глубокого обучения, где под глубоким обучением понимается суперпозиция моделей. В качестве исследуемой структуры сети рассматривается композиция ограниченной машины Больцмана, автокодировщика и softmax-сети. Исследуется возможность обучения нейронной сети на процессоре графического ускорителя. Проводится анализ зависимости ошибки классификации от количества параметров и размера обучающей выборки.


Публикация
Бахтеев О.Ю., Попова М.С., Стрижов В.В. Системы и средства глубокого обучения в задачах классификации // Системы и средства информатики, 2016, 26(2) : 4-22. PDF

Личные инструменты