Критерий Тьюки

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(категория)
Строка 28: Строка 28:
http://en.wikipedia.org/wiki/Tukey%27s_test
http://en.wikipedia.org/wiki/Tukey%27s_test
-
==Смотрите также==
+
==См. также==
[[Критерий стьюдентизированного размаха]]
[[Критерий стьюдентизированного размаха]]
 +
 +
[[Категория:Статистические тесты]]

Версия 16:55, 11 ноября 2009

Содержание

Постановка задачи

Имеется k выборок равного объёма n из нормально распределённой совокупности
x_{11},...x_{1n_1};x_{21},...x_{2n_2};..;x_{k1},...x_{kn_k}
Проверке подлежит нулевая гипотеза о статистической неразличимости средних

H_0: \bar{\mu_1}=\bar{\mu_2}=...=\bar{\mu_k}


Критерий Тьюки

Критерий Тьюки основан на последовательности статистик
T_j=\frac{|\bar{x_j}-\bar{x}|}{s\sqrt{\frac{k-1}{kn}}}

сравнивающих попарно все исследуемые среднии \bar{x_j} с общим средним\bar{x}.
В этом случае s^2 является оценкой общей дисперсии с f=k(n-1) степенями свободы. т.е.

 s^2=\frac{1}{k(n-1)}\sum_{j=1}^k\sum_{i=1}^{n}(x_{ij}-\bar{x})^2

Если T_j<T_{\alpha} для всех j=1,...,k , где T_{\alpha} - критическое значение критерия Тьюки,
то нулевая гипотеза H_0 (x_1=x_2=...=x_k) принимается. Нарушение неравенства для любого j отклоняет нулевую гипотезу.

Требования к выборкам

Для критерия Тьюки необходимо, чтобы дисперсии s_j^2 всех выборок были статистически неразличимы.

Литература

↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006 стр. 403

Ссылки

http://en.wikipedia.org/wiki/Tukey%27s_test

См. также

Критерий стьюдентизированного размаха

Личные инструменты