Обсуждение:Структурные методы анализа изображений и сигналов (курс лекций, А.С. Конушин, Д.П. Ветров, Д.А. Кропотов, О.В. Баринова, В.С. Конушин, 2009)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Небольшое форматирование обсуждения, чтобы было проще воспринимать текст)
Строка 1: Строка 1:
Добрый день!
Добрый день!
-
Возникли вопрос по поводу [[Структурные_методы_анализа_изображений_и_сигналов_(курс_лекций)_/_Задание_2#.D0.92.D0.B0.D1.80.D0.B8.D0.B0.D0.BD.D1.82_3|задания 3]]. Нашёл следующие непонятные для себя моменты:
+
Возник вопрос по поводу [[Структурные_методы_анализа_изображений_и_сигналов_(курс_лекций)_/_Задание_2#.D0.92.D0.B0.D1.80.D0.B8.D0.B0.D0.BD.D1.82_3|задания 3]]. Нашёл следующие непонятные для себя моменты:
*«где <tex>c_{0,j},\ldots,c_{M,j}</tex> — коэффициенты авторегрессии, которые зависят от состояния СММ.» Т.е коэффициентов М+1 штука. В то же время в описании функций сказано: «C — коэффициенты авторегрессии, матрица типа double размера K x M;» Не ясно, где ошибка - M или М+1.
*«где <tex>c_{0,j},\ldots,c_{M,j}</tex> — коэффициенты авторегрессии, которые зависят от состояния СММ.» Т.е коэффициентов М+1 штука. В то же время в описании функций сказано: «C — коэффициенты авторегрессии, матрица типа double размера K x M;» Не ясно, где ошибка - M или М+1.
Строка 10: Строка 10:
''[[Участник:Василий Ломакин|Василий Ломакин]] 20:14, 1 ноября 2009 (MSK)''
''[[Участник:Василий Ломакин|Василий Ломакин]] 20:14, 1 ноября 2009 (MSK)''
-
Василий, здравствуйте. По сути, в Вашем вопросе уже содержатся ответы:
+
:Василий, здравствуйте. По сути, в Вашем вопросе уже содержатся ответы:
-
* Матрица <tex>C\in\mathbb{R}^{K\times M</tex>;
+
:* Матрица <tex>C\in\mathbb{R}^{K\times M</tex>;
-
* В качестве величины <tex>c_{0,j}</tex> используйте <tex>d</tex>-мерный вектор Mu_j из спецификации СММ;
+
:* В качестве величины <tex>c_{0,j}</tex> используйте <tex>d</tex>-мерный вектор Mu_j из спецификации СММ;
-
* Коэффициенты авторегрессии <tex>c_{m,j}</tex> '''считаем общими''' для всех размерностей вектора <tex>x_n</tex>. Таким образом, получаем линейную комбинацию векторов и никаких некорректностей не возникает.
+
:* Коэффициенты авторегрессии <tex>c_{m,j}</tex> '''считаем общими''' для всех размерностей вектора <tex>x_n</tex>. Таким образом, :получаем линейную комбинацию векторов и никаких некорректностей не возникает.
 +
:
 +
:Желаю Удачи.
 +
:
 +
:--[[Участник:Dmitry Vetrov|Д.П. Ветров]] 16:15, 2 ноября 2009 (MSK)
-
Желаю Удачи.
+
::Я так и подумал (собственно так уже и реализовал), но на всякий случай решил уточнить. Спасибо за интересное задание!
 +
::
 +
::[[Участник:Василий Ломакин|Василий Ломакин]] 08:41, 3 ноября 2009 (MSK)
-
--[[Участник:Dmitry Vetrov|Д.П. Ветров]] 16:15, 2 ноября 2009 (MSK)
+
----
-
 
+
-
Я так и подумал (собственно так уже и реализовал), но на всякий случай решил уточнить. Спасибо за интересное задание!
+
-
 
+
-
[[Участник:Василий Ломакин|Василий Ломакин]] 08:41, 3 ноября 2009 (MSK)
+
Здравствуйте! Появился вопрос по поводу 1 варианта 2 задания.
Здравствуйте! Появился вопрос по поводу 1 варианта 2 задания.

Версия 14:08, 13 ноября 2009

Добрый день! Возник вопрос по поводу задания 3. Нашёл следующие непонятные для себя моменты:

  • «где c_{0,j},\ldots,c_{M,j} — коэффициенты авторегрессии, которые зависят от состояния СММ.» Т.е коэффициентов М+1 штука. В то же время в описании функций сказано: «C — коэффициенты авторегрессии, матрица типа double размера K x M;» Не ясно, где ошибка - M или М+1.
  • \mu_{n,j}=c_{0,j}+\sum_{m=1}^Mc_{m,j}x_{n-m}, где c_{0,j} - число, c_{m,j}x_{n-m} - вектор, получается сложение вектора с числом. Хотя если смотреть с точки зрения матлаба, вопрос отпадает :)
  • В описании функций указано «Mu — константы в центрах гауссиан для каждого состояния, матрица типа double размера K x d, в которой в каждой строке стоит вектор для соответствующего состояния; ». Но по формуле Mu на каждом шаге генерится только с помощью авторегрессии. Для чего тогда передавать этот параметр?

Василий Ломакин 20:14, 1 ноября 2009 (MSK)

Василий, здравствуйте. По сути, в Вашем вопросе уже содержатся ответы:
  • Матрица C\in\mathbb{R}^{K\times M;
  • В качестве величины c_{0,j} используйте d-мерный вектор Mu_j из спецификации СММ;
  • Коэффициенты авторегрессии c_{m,j} считаем общими для всех размерностей вектора x_n. Таким образом, :получаем линейную комбинацию векторов и никаких некорректностей не возникает.
Желаю Удачи.
--Д.П. Ветров 16:15, 2 ноября 2009 (MSK)
Я так и подумал (собственно так уже и реализовал), но на всякий случай решил уточнить. Спасибо за интересное задание!
Василий Ломакин 08:41, 3 ноября 2009 (MSK)

Здравствуйте! Появился вопрос по поводу 1 варианта 2 задания.

При реализации функции HMM_TEST нужно хранить величину lj (сколько моментов времени мы находимся в данном состоянии) для каждого t(n,j). Как рассчитывать эту величину, если мы не знаем ни того состояния, в котором находимся в начальный момент времени, ни того состояния, куда переходим? Или нужно делать полный перебор для состояния t(n-1,i) по состояниям t(n,j), то есть из каждого состояния можем попасть в одно из К?

Надеюсь на Ваши разъяснения! Извините за корявый вопрос, лучше сформулировать не удалось.


Марина Дударенко 14:30, 13 ноября 2009 (MSK)Марина Дударенко

Личные инструменты