Критерий Фишера
Материал из MachineLearning.
(→Описание критерия) |
(уточнение) |
||
Строка 6: | Строка 6: | ||
В [[регрессионный анализ|регрессионном анализе]] критерий Фишера позволяет оценивать значимость линейных регрессионных моделей. | В [[регрессионный анализ|регрессионном анализе]] критерий Фишера позволяет оценивать значимость линейных регрессионных моделей. | ||
- | В частности, он используется в [[шаговая | + | В частности, он используется в [[шаговая регрессия|шаговой регрессии]] для проверки целесообразности включения или исключения независимых переменных (признаков) в регрессионную модель. |
В [[Дисперсионный анализ|дисперсионном анализе]] критерий Фишера позволяет оценивать значимость факторов и их взаимодействия. | В [[Дисперсионный анализ|дисперсионном анализе]] критерий Фишера позволяет оценивать значимость факторов и их взаимодействия. | ||
Строка 27: | Строка 27: | ||
::<tex>\overline{x}=\frac{1}{n}\sum_{i=1}^n {x_i};\;\; \overline{y}=\frac{1}{m}\sum_{i=1}^m {y_i}</tex> — выборочные средние выборок <tex>x^n</tex> и <tex>y^m</tex>. | ::<tex>\overline{x}=\frac{1}{n}\sum_{i=1}^n {x_i};\;\; \overline{y}=\frac{1}{m}\sum_{i=1}^m {y_i}</tex> — выборочные средние выборок <tex>x^n</tex> и <tex>y^m</tex>. | ||
- | '''Дополнительное предположение''': выборки <tex>x^n</tex> и <tex>y^m</tex> являются [[ | + | '''Дополнительное предположение''': выборки <tex>x^n</tex> и <tex>y^m</tex> являются [[Нормальное распределение|нормальными]]. |
Критерий Фишера чувствителен к нарушению предположения о нормальности. | Критерий Фишера чувствителен к нарушению предположения о нормальности. | ||
Версия 14:44, 13 ноября 2009
|
Критерий Фишера применяется для проверки равенства дисперсий двух выборок. Его относят к критериям рассеяния.
При проверке гипотезы положения (гипотезы о равенстве средних значений в двух выборках) с использованием критерия Стьюдента имеет смысл предварительно проверить гипотезу о равенстве дисперсий. Если она верна, то для сравнения средних можно воспользоваться более мощным критерием.
В регрессионном анализе критерий Фишера позволяет оценивать значимость линейных регрессионных моделей. В частности, он используется в шаговой регрессии для проверки целесообразности включения или исключения независимых переменных (признаков) в регрессионную модель.
В дисперсионном анализе критерий Фишера позволяет оценивать значимость факторов и их взаимодействия.
Критерий Фишера основан на дополнительных предположениях о независимости и нормальности выборок данных. Перед его применением рекомендуется выполнить проверку нормальности.
Примеры задач
Описание критерия
Заданы две выборки .
Обозначим через и дисперсии выборок и , и — выборочные оценки дисперсий и :
- ;
- ,
где
- — выборочные средние выборок и .
Дополнительное предположение: выборки и являются нормальными. Критерий Фишера чувствителен к нарушению предположения о нормальности.
Статистика критерия Фишера:
имеет распределение Фишера с и степенями свободы. Обычно в числителе ставится большая из двух сравниваемых дисперсий. Тогда критической областью критерия является правый хвост распределения Фишера, что соотвествует альтернативной гипотезе .
Критерий (при уровне значимости ):
- против альтернативы
- если или , то нулевая гипотеза отвергается в пользу альтернативы .
- против альтернативы
- если , то нулевая гипотеза отвергается в пользу альтернативы ;
где есть -квантиль распределения Фишера с и степенями свободы.
Литература
- Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. — 816 с.
См. также
- Критерий Стьюдента
- Проверка статистических гипотез
- Статистика (функция выборки)
- Нормальный дисперсионный анализ
Ссылки
- Распределение Фишера (Википедия).
- Критерий Фишера (Википедия).