Тренд

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
м (орфография)
Строка 1: Строка 1:
{{TOCright}}
{{TOCright}}
-
'''Тренд''' - тенденция изменения показтелей [[временной ряд|временного ряда]]. Тренды могут быть описаны различными функциями — линейными, логарифмическими, степенными и т. д. Тип тренда устанавливают на основе данных временного ряда, путем осреднения показателей динамики ряда, на основе [[Проверка статистических гипотез|статистической проверки гипотезы]] о постоянстве параметров графика.
+
'''Тренд''' - тенденция изменения показателей [[временной ряд|временного ряда]]. Тренды могут быть описаны различными функциями — линейными, логарифмическими, степенными и т. д. Тип тренда устанавливают на основе данных временного ряда, путем осреднения показателей динамики ряда, на основе [[Проверка статистических гипотез|статистической проверки гипотезы]] о постоянстве параметров графика.
== Методы оценки: ==
== Методы оценки: ==

Версия 19:44, 14 ноября 2009

Содержание

Тренд - тенденция изменения показателей временного ряда. Тренды могут быть описаны различными функциями — линейными, логарифмическими, степенными и т. д. Тип тренда устанавливают на основе данных временного ряда, путем осреднения показателей динамики ряда, на основе статистической проверки гипотезы о постоянстве параметров графика.

Методы оценки:

  1. Параметрические — рассматривают временной ряд как гладкую функцию от t: X_t=f(t), t=1...n; затем различными методами оцениваются параметры функции f(t), например, МНК, выделяют линеаризуемые тренды, то есть приводимые к линейному виду относительно параметров тренда на основе тех или иных алгебраических преобразований.
  2. Непараметрические — это разного рода скользящие средние (простая, взвешенная), их расчет; метод применяется для оценки тренда, но не для прогнозирования; полезен в случае, когда для оценки тренда не удается подобрать подходящую функцию.

Предпололжим что основной процесс - неполностью изученная физ. система. Можно построить моель независимо от природы процесса, чтобы объяснить поведение показателей. В частности, если нужно узнать возрастает или убывает тенденция покаазтелей, это можно при поомщи статистики описать

Моделирование трендов

Для описания временных рядов используются математические модели. Временной ряд x_t, генерируемый некоторой моделью, можно представить в виде двух компонент:

x_t=\xi_t+\epsilon_t,

где величина \epsilon_t - шум, генерируется случайным неавтокоррелированным процессом с нулевым математическим ожиданием и конечной (не обязательно постоянной) дисперсией, а величина \xi_t может быть cгенерирована либо детерминированной функцией, либо случайным процессом, либо какой-нибудь их комбинацией. Величины \xi_t и \epsilon_t различаются характером воздействия на значения последующих членов ряда:

  • переменная \epsilon_t влияет только на значение синхронного ей члена ряда
  • \xi_t в известной степени определяет значение нескольких или всех последующих членов ряда.

Через величину \xi_t осуществляется взаимодействие членов ряда; таким образом, в ней содержится информация, необходимая для получения прогнозов. Величина \xi_t называется уровнем ряда в момент t, а закон эволюции уровня во времени — трендом. Тренд может быть выражен как детерминированной, так и случайной функциями, либо их комбинацией. Стохастические тренды имеют, например, ряды со случайным уровнем или случайным скачкообразным характером роста.

Компоненты временного ряда \xi_t и \epsilon_t ненаблюдаемы. Они являются теоретическими величинами. Их выделение и составляет предмет анализа временного ряда в задаче прогнозирования. Оценку будущих членов ряда обычно делают по прогнозной модели. Прогнозная модель —- это модель, аппроксимирующая тренд. Прогнозы — это оценки будущих уровней ряда, а последовательность прогнозов для различных периодов упреждения \tau = 1, 2, .... k составляет оценку тренда.

При построении прогнозной модели выдвигается гипотеза о динамике величины \xi_t, т.е. о характере тренда. Однако в связи с тем, что уверенность в гипотезе всегда относительна, рассматриваемые модели наделяются адаптивными свойствами, способностью к корректировке исходной гипотезы или даже к замене ее другой, более адекватно (с точки зрения точности прогнозов) отражающей поведение реального ряда.

Пример детерминированного тренда:

\xi_t = a_1 + a_2t + a_3t^2

Пример случайного тренда:

\xi_t = \xi_{t-1} + u_t = \xi_0 + \sum_{i=1}^{t} u_i

где \xi_t — некоторое начальное значение;

u_t — случайная переменная.

Пример тренда смешанного типа:

\xi_t = a_1 + a_2t + u_t + qu_{t-1} + b\sin(\omega t),

где a_1,~ a_2,~ q,~ b,~ \omega - постоянные коэффициенты, u_t - случайная переменная.

См. также

Ссылки

[1] Wikipedia

Литература

  1. Лукашин Ю.П. Адаптивные методы краткосрочного прогнозирования временных рядов - М. Финансы и статистика, 2003
Личные инструменты