Нормальное распределение
Материал из MachineLearning.
Bogdan (Обсуждение | вклад)
(Новая: {{Вероятностное распределение| name =Нормальное распределение| type =Плотность| pdf_image =[[Файл:Normal ...)
К следующему изменению →
Версия 14:30, 19 ноября 2009
Плотность вероятности 325px|Плотность нормального распределения Зеленая линия соответствует стандартному нормальному распределению | |
Функция распределения 325px|Функция распределения нормального распределения Цвета на этом графике соответствуют графику наверху | |
Параметры | - коэффициент сдвига (вещественное число) - коэффициент масштаба (вещественный, строго положительный) |
Носитель | |
Плотность вероятности | |
Функция распределения | |
Математическое ожидание | |
Медиана | |
Мода | |
Дисперсия | |
Коэффициент асимметрии | |
Коэффициент эксцесса | |
Информационная энтропия | |
Производящая функция моментов | |
Характеристическая функция |
Нормальное распределение, также называемое распределением Гаусса, — распределение вероятностей, которое играет важнейшую роль во многих областях знаний, особенно в физике. Физическая величина подчиняется нормальному распределению, когда она подвержена влиянию огромного числа случайных помех. Ясно, что такая ситуация крайне распространена, поэтому можно сказать, что из всех распределений в природе чаще всего встречается именно нормальное распределение — отсюда и произошло одно из его названий.
Нормальное распределение зависит от двух параметров — смещения и масштаба, то есть является с математической точки зрения не одним распределением, а целым их семейством. Значения параметров соответствуют значениям среднего (математического ожидания) и разброса (стандартного отклонения).
Стандартным нормальным распределением называется нормальное распределение с математическим ожиданием 0 и стандартным отклонением 1.
Содержание |
Моделирование нормальных случайных величин
Простейшие, но неточные методы моделирования основываются на центральной предельной теореме. Именно, если сложить много независимых одинаково распределённых величин с конечной дисперсией, то сумма будет распределена примерно нормально. Например, если сложить 12 независимых базовых случайных величин, получится грубое приближение стандартного нормального распределения. Тем не менее, с увеличением слагаемых распределение суммы стремится к нормальному.
Использование точных методов предпочтительно, поскольку у них практически нет недостатков. В частности, преобразование Бокса — Мюллера является точным, быстрым и простым для реализации методом генерации.
Свойства
Если случайные величины и независимы и имеют нормальное распределение с математическими ожиданиями и и дисперсиями и соответственно, то также имеет нормальное распределение с математическим ожиданием и дисперсией .
Статистическая проверка принадлежности нормальному распределению
Поскольку нормальное распределение часто встречается на практике, то для него разработаны специальные статистические критерии проверки на «нормальность»:
- Критерий Пирсона
- Критерий Колмогорова-Смирнова
- Шаблон:Не переведено
- Шаблон:Не переведено
- Шаблон:Не переведено
- Шаблон:Не переведено — не столько критерий, сколько графическая иллюстрация: точки специально построенного графика должны лежать почти на одной прямой.
Заключение
Нормальное распределение наиболее часто встречается в природе, нормально распределёнными являются следующие случайные величины:
- отклонение при стрельбе
- ошибки при измерениях
- рост человека
Такое широкое распространение закона связано с тем, что он является предельным законом, к которому приближаются многие другие (например, биномиальный). Доказано, что сумма очень большого числа случайных величин, влияние каждой из которых близко к 0, имеет распределение, близкое к нормальному. Этот факт является содержанием предельной теоремы Ляпунова.