Участник:Vlyalin

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Классификация зашумлённого текста)
(Веста 2018, 10 семестр)
Строка 15: Строка 15:
В работе рассматривается возможность контролируемой генерации текста с заданными параметрами. На данном этапе работы исследуется применение вариационного автокодировщика (VAE) к текстовой информации. Вариационный автокодировщик может рассматриваться как метод байесовской регуляризации с введением ограничений на латентное пространство нейронной сети (на выходе из кодировщика). С помощью введения дополнительных дискретных размерностей в латентное пространство и частичного обучения можно получить возможность управлять грамматическим временем (grammar tense) и сентиментом предложения (Zhiting Hu et. al., 2017). В работе планируется экспериментальное исследование возможности управления другими признаками и другие возможные расширения данной модели.
В работе рассматривается возможность контролируемой генерации текста с заданными параметрами. На данном этапе работы исследуется применение вариационного автокодировщика (VAE) к текстовой информации. Вариационный автокодировщик может рассматриваться как метод байесовской регуляризации с введением ограничений на латентное пространство нейронной сети (на выходе из кодировщика). С помощью введения дополнительных дискретных размерностей в латентное пространство и частичного обучения можно получить возможность управлять грамматическим временем (grammar tense) и сентиментом предложения (Zhiting Hu et. al., 2017). В работе планируется экспериментальное исследование возможности управления другими признаками и другие возможные расширения данной модели.
-
=== Веста 2018, 10 семестр ===
+
=== Весна 2018, 10 семестр ===
====Классификация зашумлённого текста====
====Классификация зашумлённого текста====

Версия 10:47, 19 декабря 2018

Лялин Владислав Андреевич

МФТИ, ФУПМ

Кафедра Интеллектуальные системы Направление Интеллектуальный анализ данных

Mailto lyalin@phystech.edu


Содержание

Отчеты о научно-исследовательской работе

Осень 2017, 9 семестр

Генерация текста с введением контролируемых категориальных признаков

В работе рассматривается возможность контролируемой генерации текста с заданными параметрами. На данном этапе работы исследуется применение вариационного автокодировщика (VAE) к текстовой информации. Вариационный автокодировщик может рассматриваться как метод байесовской регуляризации с введением ограничений на латентное пространство нейронной сети (на выходе из кодировщика). С помощью введения дополнительных дискретных размерностей в латентное пространство и частичного обучения можно получить возможность управлять грамматическим временем (grammar tense) и сентиментом предложения (Zhiting Hu et. al., 2017). В работе планируется экспериментальное исследование возможности управления другими признаками и другие возможные расширения данной модели.

Весна 2018, 10 семестр

Классификация зашумлённого текста

В работе были исследованы методы нейросетевой классификации текста, устойчивые к шуму (опечаткам). На корпусах IMDB и Russian Twitter Sentiment Analysis Dataset были сравнены следующие методы:

 * FastText-embedding + GRU
 * Character-level CNN
 * Иерархическая модель CharCNN-WordRNN, аналогичная модели в Character-Aware Neural Language Models (Yoon Kim et. al, 2015)
 * CharCNN-WordRNN с механизмом внимания (attention)

По результатам работы была написана статья "What Did You Say? On Classification of Noisy Texts", Valentin Malykh and Vladislav Lyalin и подана на ревью на конференцию RCAI2018.

Личные инструменты