Участник:Пасконова Ольга/Песочница

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Литература)
(См. также)
Строка 63: Строка 63:
==См. также==
==См. также==
(для ссылок на страницы внутри Ресурса).
(для ссылок на страницы внутри Ресурса).
 +
 +
[[Категория:Прикладная статистика]]
 +
[[Категория:Дисперсионный анализ]]

Версия 20:44, 11 декабря 2009

Статьи о группах методов или критериев

Некоторые рекомендации
  1. Эти статьи не содержат описаний методов, но в них должны перечисляться ссылки на большое число методов или критериев, объединённых под данным общим названием.
  2. Должно даваться общее определение из классических источников (например, из энциклопедии теории вероятностей и математической статистики).
  3. Желательны примеры задач.
  4. Желательно указывать, чем отличаются различные критерии и методы в данной группе друг от друга, какие есть рекомендации по выбору одного из этих методов.
  5. Любые сообщаемые факты должны сопровождаться ссылками на источник.
  6. Помните, что предоставляемая информация должна быть полезна специалистам при решении практических задач.
  7. Собрать грамотную подборку ссылок (вместо тупого копирования их содержимого) с вашими лаконичными комментариями — это уже очень полезно!

— К.В.Воронцов 02:14, 14 ноября 2009 (MSK)



Ссылки на источники обязательны. Если Вы упоминаете другие понятия прикладной статистики (в том числе названия статистических критериев), оформляйте их как ссылки на страницы внутри Ресурса. В конце каждой статьи не забывайте про разделы ==Литература== (для книг), ==Ссылки== (для ссылок на внешние URL), ==См. также== (для ссылок на страницы внутри Ресурса).

Двухфакторная непараметрическая модель.

новая статья

Литература

(для книг)

Ссылки

(для ссылок на внешние URL)

См. также

(для ссылок на страницы внутри Ресурса).

Дисперсионный анализ.

общие определения, примеры задач и перечень методов (в виде списка ссылок)

Содержание

t-критерий Стьюдента — общее название для статистических тестов, в которых статистика критерия имеет распределение Стьюдента. Наиболее часто t-критерии применяются для проверки равенства средних значений в двух выборках. Нулевая гипотеза предполагает, что средние равны (отрицание этого предположения называют гипотезой сдвига).

Все разновидности критерия Стьюдента являются параметрическими и основаны на дополнительном предположении о нормальности выборки данных. Поэтому перед применением критерия Стьюдента рекомендуется выполнить проверку нормальности. Если гипотеза нормальности отвергается, можно проверить другие распределения, если и они не подходят, то следует воспользоваться непараметрические статистические тесты.


Дисперсионный анализ (ANOVA) [Лапач, 193, Кулаичев, 170].

Литература

(для книг)

  1. Шеффе Г. Дисперсионный анализ. — М., 1980.

Ссылки

(для ссылок на внешние URL)

См. также

(для ссылок на страницы внутри Ресурса).

Личные инструменты