Участник:Пасконова Ольга/Песочница
Материал из MachineLearning.
(→Дисперсионный анализ.) |
(→Дисперсионный анализ.) |
||
Строка 33: | Строка 33: | ||
[[Категория:Дисперсионный анализ]] | [[Категория:Дисперсионный анализ]] | ||
- | ==Дисперсионный анализ | + | ==Дисперсионный анализ== |
общие определения, примеры задач и перечень методов (в виде списка ссылок) | общие определения, примеры задач и перечень методов (в виде списка ссылок) | ||
Строка 40: | Строка 40: | ||
Целью '''дисперсионного анализа''' (ANOVA) является проверка значимости различия между средними с помощью сравнения (т.е. анализа) дисперсий. А именно, разделение общей дисперсии на несколько источников (связанных с различными эффектами в плане), позволяет сравнить дисперсию, вызванную различием между группами, с дисперсией, с дисперсией, вызванной внутригрупповой изменчивостью. При истинности нулевой гипотезы (о равенстве средних в нескольких группах наблюдений, выбранных из генеральной совокупности), оценка дисперсии, связанной с внутригрупповой изменчивостью, должна быть близкой к оценке межгрупповой дисперсии. | Целью '''дисперсионного анализа''' (ANOVA) является проверка значимости различия между средними с помощью сравнения (т.е. анализа) дисперсий. А именно, разделение общей дисперсии на несколько источников (связанных с различными эффектами в плане), позволяет сравнить дисперсию, вызванную различием между группами, с дисперсией, с дисперсией, вызванной внутригрупповой изменчивостью. При истинности нулевой гипотезы (о равенстве средних в нескольких группах наблюдений, выбранных из генеральной совокупности), оценка дисперсии, связанной с внутригрупповой изменчивостью, должна быть близкой к оценке межгрупповой дисперсии. | ||
- | Цель дисперсионного анализа | + | ==Цель дисперсионного анализа== |
Основной целью дисперсионного анализа является исследование значимости различия между средними. Раздел Элементарные понятия статистики содержит краткое введение в исследование статистической значимости. Если вы просто сравниваете средние в двух выборках, дисперсионный анализ даст тот же результат, что и обычный t-критерий для независимых выборок (если сравниваются две независимые группы объектов или наблюдений) или t-критерий для зависимых выборок (если сравниваются две переменные на одном и том же множестве объектов или наблюдений). Если вы не достаточно знакомы с этими критериями, рекомендуем обратиться к разделу Основные статистики и таблицы. | Основной целью дисперсионного анализа является исследование значимости различия между средними. Раздел Элементарные понятия статистики содержит краткое введение в исследование статистической значимости. Если вы просто сравниваете средние в двух выборках, дисперсионный анализ даст тот же результат, что и обычный t-критерий для независимых выборок (если сравниваются две независимые группы объектов или наблюдений) или t-критерий для зависимых выборок (если сравниваются две переменные на одном и том же множестве объектов или наблюдений). Если вы не достаточно знакомы с этими критериями, рекомендуем обратиться к разделу Основные статистики и таблицы. | ||
+ | |||
+ | ==История== | ||
Откуда произошло название Дисперсионный анализ? Может показаться странным, что процедура сравнения средних называется дисперсионным анализом. В действительности, это связано с тем, что при исследовании статистической значимости различия между средними двух (или нескольких) групп, мы на самом деле сравниваем (т.е. анализируем) выборочные дисперсии. Фундаментальная концепция дисперсионного анализа предложена Фишером в 1920 году. Возможно, более естественным был бы термин анализ суммы квадратов или анализ вариации, но в силу традиции употребляется термин дисперсионный анализ. | Откуда произошло название Дисперсионный анализ? Может показаться странным, что процедура сравнения средних называется дисперсионным анализом. В действительности, это связано с тем, что при исследовании статистической значимости различия между средними двух (или нескольких) групп, мы на самом деле сравниваем (т.е. анализируем) выборочные дисперсии. Фундаментальная концепция дисперсионного анализа предложена Фишером в 1920 году. Возможно, более естественным был бы термин анализ суммы квадратов или анализ вариации, но в силу традиции употребляется термин дисперсионный анализ. |
Версия 08:41, 12 декабря 2009
Статьи о группах методов или критериев
Некоторые рекомендации
— К.В.Воронцов 02:14, 14 ноября 2009 (MSK) |
Ссылки на источники обязательны. Если Вы упоминаете другие понятия прикладной статистики (в том числе названия статистических критериев), оформляйте их как ссылки на страницы внутри Ресурса. В конце каждой статьи не забывайте про разделы ==Литература== (для книг), ==Ссылки== (для ссылок на внешние URL), ==См. также== (для ссылок на страницы внутри Ресурса).
Двухфакторная непараметрическая модель.
новая статья
- Двухфакторная непараметрическая модель: критерий Фридмана [Лапач, 203], критерий Пейджа. Примеры: сравнение эффективности методов производства, агротехнических приёмов.
Литература
(для книг)
Ссылки
(для ссылок на внешние URL)
См. также
(для ссылок на страницы внутри Ресурса).
Дисперсионный анализ
общие определения, примеры задач и перечень методов (в виде списка ссылок)
|
Целью дисперсионного анализа (ANOVA) является проверка значимости различия между средними с помощью сравнения (т.е. анализа) дисперсий. А именно, разделение общей дисперсии на несколько источников (связанных с различными эффектами в плане), позволяет сравнить дисперсию, вызванную различием между группами, с дисперсией, с дисперсией, вызванной внутригрупповой изменчивостью. При истинности нулевой гипотезы (о равенстве средних в нескольких группах наблюдений, выбранных из генеральной совокупности), оценка дисперсии, связанной с внутригрупповой изменчивостью, должна быть близкой к оценке межгрупповой дисперсии.
Цель дисперсионного анализа
Основной целью дисперсионного анализа является исследование значимости различия между средними. Раздел Элементарные понятия статистики содержит краткое введение в исследование статистической значимости. Если вы просто сравниваете средние в двух выборках, дисперсионный анализ даст тот же результат, что и обычный t-критерий для независимых выборок (если сравниваются две независимые группы объектов или наблюдений) или t-критерий для зависимых выборок (если сравниваются две переменные на одном и том же множестве объектов или наблюдений). Если вы не достаточно знакомы с этими критериями, рекомендуем обратиться к разделу Основные статистики и таблицы.
История
Откуда произошло название Дисперсионный анализ? Может показаться странным, что процедура сравнения средних называется дисперсионным анализом. В действительности, это связано с тем, что при исследовании статистической значимости различия между средними двух (или нескольких) групп, мы на самом деле сравниваем (т.е. анализируем) выборочные дисперсии. Фундаментальная концепция дисперсионного анализа предложена Фишером в 1920 году. Возможно, более естественным был бы термин анализ суммы квадратов или анализ вариации, но в силу традиции употребляется термин дисперсионный анализ. Разбиение суммы квадратов Многофакторный дисперсионный анализ Эффекты взаимодействия
Также смотрите разделы. Сложные планы Ковариационный анализ (ANCOVA) Многомерные планы: многомерный дисперсионный и ковариационный анализ Анализ контрастов и апостериорные критерии Предположения и эффекты их нарушения
См. также Методы дисперсионного анализа, Компоненты дисперсии и смешанная модель ANOVA/ANCOVA, а также Планироване эксперимента.
t-критерий Стьюдента — общее название для статистических тестов, в которых статистика критерия имеет распределение Стьюдента. Наиболее часто t-критерии применяются для проверки равенства средних значений в двух выборках. Нулевая гипотеза предполагает, что средние равны (отрицание этого предположения называют гипотезой сдвига).
Все разновидности критерия Стьюдента являются параметрическими и основаны на дополнительном предположении о нормальности выборки данных. Поэтому перед применением критерия Стьюдента рекомендуется выполнить проверку нормальности. Если гипотеза нормальности отвергается, можно проверить другие распределения, если и они не подходят, то следует воспользоваться непараметрические статистические тесты.
Дисперсионный анализ (ANOVA)
[Лапач, 193, Кулаичев, 170].
- Модели факторного эксперимента. Примеры: факторы, влияющие на успешность решения математических задач; факторы, влияющие на объёмы продаж.
- Однофакторная параметрическая модель: метод Шеффе.
- Однофакторная непараметрическая модель: критерий Краскела-Уоллиса, критерий Джонкхиера.
- Общий случай модели с постоянными факторами, теорема Кокрена.
- Двухфакторная непараметрическая модель: критерий Фридмана [Лапач, 203], критерий Пейджа. Примеры: сравнение эффективности методов производства, агротехнических приёмов.
- Двухфакторный нормальный анализ.
- Ковариационный анализ (постановка задачи).
Литература
(для книг)
- Шеффе Г. Дисперсионный анализ. — М., 1980.
Ссылки
(для ссылок на внешние URL)
См. также
(для ссылок на страницы внутри Ресурса).