Гипергеометрическое распределение

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(категория)
(оформление)
Строка 26: Строка 26:
|}
|}
-
Это выборка из <tex>N</tex> объектов в которых <tex>m</tex> дефективных. Гипергеометрическое распределение описывает вероятность того, что именно <tex>k</tex> дефективных в выборке из <tex>n</tex> конкретных объектов, взятых из совокупности.
+
Это выборка из <tex>N</tex> объектов в которых <tex>m</tex> дефектных. Гипергеометрическое распределение описывает вероятность того, что именно <tex>k</tex> дефектных в выборке из <tex>n</tex> конкретных объектов, взятых из совокупности.
-
Если случайная величина <tex>X</tex> распределена гипрегеометрически с параметрами <tex>N,m,n</tex>, тогда вероятность получить ровно <tex>k</tex> успехов (дефективных объектов в предыдущем примере) будет следующей:
+
Если случайная величина <tex>X</tex> распределена гипергеометрически с параметрами <tex>N,\;m,\;n</tex>, тогда вероятность получить ровно <tex>k</tex> успехов (дефектных объектов в предыдущем примере) будет следующей:
<tex>
<tex>

Версия 19:37, 12 декабря 2009

Содержание

Гипергеометрическое распределение

В теории вероятности и статистике, гипергеометрическое распределение это дискретное вероятностное распределение, которое описывает количество успехов в выборке без возвращений длины n над конечной совокупностью объектов.

Попали в выборку Не попали в выборку Всего
С дефектом (успех) k m-k m
Без дефекта n-k N+k-n-m N-m
Всего n N-n N

Это выборка из N объектов в которых m дефектных. Гипергеометрическое распределение описывает вероятность того, что именно k дефектных в выборке из n конкретных объектов, взятых из совокупности.

Если случайная величина X распределена гипергеометрически с параметрами N,\;m,\;n, тогда вероятность получить ровно k успехов (дефектных объектов в предыдущем примере) будет следующей:


f(k;N,m,n)=\frac{C_k^m C_{n-k}^{N-m}}{C_k^N}

Математическое ожидание


E(X)=\frac{nm}{N}

Дисперсия


D(X)=\frac{n(\frac{m}{N})(1-\frac{m}{N})(N-n)}{N-1}

Ссылки

http://en.wikipedia.org/wiki/Hypergeometric_distribution

Личные инструменты