Медианный критерий
Материал из MachineLearning.
(ссылки) |
|||
Строка 4: | Строка 4: | ||
Тест имеет низкую эффективность для диапазона выборок от умеренного до большого размера, и, в значительной степени, расценивается как устаревший. [[Критерий Уилкоксона-Манна-Уитни]] для двух выборок лучше работает в этом случае. Siegel & Castellan (1988, p. 124), считают, что медианному критерию нет никакой альтернативы, когда одно или более наблюдений находятся "за пределами шкалы". Существенное различие между двумя критериями состоит в том, что медианный критерий учитывает только положение каждого наблюдения относительно совокупной медианы, тогда как критерий Уилкоксона-Манна-Уитни принимает во внимание ранг каждого наблюдения. Таким образом из двух рассмотренных тестов, последний обычно более показателен. | Тест имеет низкую эффективность для диапазона выборок от умеренного до большого размера, и, в значительной степени, расценивается как устаревший. [[Критерий Уилкоксона-Манна-Уитни]] для двух выборок лучше работает в этом случае. Siegel & Castellan (1988, p. 124), считают, что медианному критерию нет никакой альтернативы, когда одно или более наблюдений находятся "за пределами шкалы". Существенное различие между двумя критериями состоит в том, что медианный критерий учитывает только положение каждого наблюдения относительно совокупной медианы, тогда как критерий Уилкоксона-Манна-Уитни принимает во внимание ранг каждого наблюдения. Таким образом из двух рассмотренных тестов, последний обычно более показателен. | ||
+ | |||
+ | ==Ссылки== | ||
+ | * [http://en.wikipedia.org/wiki/Median_test Median test] — материал из Википедии | ||
+ | * [http://www.statsoft.ru/home/portal/applications/Multivariatadvisor/Nonparametrics/Kraskel-Uoliss.htm Дисперсионный анализ Краскела-Уоллиса и медианный тест] — учебник по статистике, StatSoft | ||
==Литература== | ==Литература== |
Версия 22:07, 13 декабря 2009
В статистике медианный критерий - частный случай критерия хи-квадрат. Это - непараметрический критерий, который предназначен для проверки нулевой гипотезы о том, что медианы совокупностей, из которых сделаны две выборки - одинаковы.
Данные в каждой выборке разбиваются на две группы: одна состоит из элементов, значения которых выше чем медианное значение объединенной выборки, а другая состоит из данных, значения которых в медиане или ниже. При этом используется критерий хи-квадрат Пирсона , чтобы определить, отличаются ли наблюдаемые частоты в каждой группе от ожидаемых частот, полученных из распределения, комбинирующего обе эти выборки.
Тест имеет низкую эффективность для диапазона выборок от умеренного до большого размера, и, в значительной степени, расценивается как устаревший. Критерий Уилкоксона-Манна-Уитни для двух выборок лучше работает в этом случае. Siegel & Castellan (1988, p. 124), считают, что медианному критерию нет никакой альтернативы, когда одно или более наблюдений находятся "за пределами шкалы". Существенное различие между двумя критериями состоит в том, что медианный критерий учитывает только положение каждого наблюдения относительно совокупной медианы, тогда как критерий Уилкоксона-Манна-Уитни принимает во внимание ранг каждого наблюдения. Таким образом из двух рассмотренных тестов, последний обычно более показателен.
Ссылки
- Median test — материал из Википедии
- Дисперсионный анализ Краскела-Уоллиса и медианный тест — учебник по статистике, StatSoft
Литература
- Siegel, S., & Castellan, N. J. Jr. (1988, 2nd ed.). Nonparametric statistics for the behavioral sciences. New York: McGraw-Hill.
- Friedlin, B. & Gastwirth, J. L. (2000). Should the median test be retired from general use? The American Statistician, 54, 161-164.
Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |