Участник:Пасконова Ольга/Песочница
Материал из MachineLearning.
(→См. также) |
(→Ссылки) |
||
Строка 75: | Строка 75: | ||
== Ссылки == | == Ссылки == | ||
- | + | ||
* [http://www.tspu.tula.ru/res/math/mop/lections/lection_7.htm#_Toc73845987 Дисперсионный анализ] - Аналитическая статистика. | * [http://www.tspu.tula.ru/res/math/mop/lections/lection_7.htm#_Toc73845987 Дисперсионный анализ] - Аналитическая статистика. | ||
* [http://lib.socio.msu.ru/l/library?e=d-000-00---001ucheb--00-0-0-0prompt-10---4------0-1l--1-ru-50---20-about---00031-001-1-0windowsZz-1251-00&a=d&cl=CL1&d=HASHe10c3b36c7d751dd18704b.11 Многофакторный дисперсионный анализ] - Электронная библиотека. | * [http://lib.socio.msu.ru/l/library?e=d-000-00---001ucheb--00-0-0-0prompt-10---4------0-1l--1-ru-50---20-about---00031-001-1-0windowsZz-1251-00&a=d&cl=CL1&d=HASHe10c3b36c7d751dd18704b.11 Многофакторный дисперсионный анализ] - Электронная библиотека. |
Версия 11:06, 16 декабря 2009
Содержание |
Двухфакторная непараметрическая модель
- Двухфакторная непараметрическая модель: критерий Фридмана [Лапач, 203], критерий Пейджа. Примеры: сравнение эффективности методов производства, агротехнических приёмов.
Данные.
В каждом из блоков содержится по одному наблюдению на каждуб из обработок. Будем считать наблюдения реализацией случайных велечин в модели
, где .
Здесь - неизвестное общее среднее, - эффект блока (неизвестный мешающий параметр), - эффект блока (интересующий нас параметр), - случайная ошибка
Допущения.
1. Все ошибки независимы.
2. Все имеют одинаковое непрерывное (неизвестное) распределение.
Критерий Фридмана
Для проверки гипотезы
против альтернативы
: не все равны между собой
применяется Критерий Фридмана [Холлендер М., Вульф Д.А., 155; Лагутин М. Б., 260]
Пример
Д. Хебб и К.Уильямс разработали тест эстакадного лабиринта для сравнительной оценки "сообразительности" животных. Он состоит из 12 заданий. Есть данные средних чисел ошибок при выполнении этих заданий крысами, кроликами и кошками. Есть ли животные, которые значимо различаются?
Критерий Пейджа
Нередко условия эксперимента таковы, что обработки упорядочены естественным образом, например, по интенсивности стимулов, сложности заданий и т.п. Критерий Пейджа учитывает информацию, содержащуюся в предпологаемой упорядоченности (в отличие от критерия Фридмана, статистика которого принимает одно и то же значение для всех перенумераций обработок).
Для проверки гипотезы
против альтернативы возрастания эффектов обработок
,
где хотя бы одно из неравенств строгое,
выполняется статистика критерия Пейджа [Холлендер М., Вульф Д.А., 163; Лагутин М. Б., 263]
Пример
Прочность волокон хлопка.
Проведен опыт, в котором изучалось влияние колличества калорий удобрения, вносимого в почву, на разрывную прочность волокон хлопка. С каждой делянки отбирался один образец хлопка, на котором 4 измерительных показателя прочности по Прессли. Даны данные по этим четырем замерам. С помощью критерия Пейджа проверить гипотезу об отсутствии влияния количества удобрения на прочность нити, против альтернативы убывания прочности с ростом количества удобрения.
Критерий Пейджа
История
Литература
- Шеффе Г. Дисперсионный анализ. — М., 1980.
- Аренс Х. Лёйтер Ю. Многомерный дисперсионный анализ.
- Лапач С. Н. , Чубенко А. В., Бабич П. Н. Статистика в науке и бизнесе. — Киев: Морион, 2002.
- Лагутин М. Б. Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003.
- Холлендер М., Вульф Д.А. Непараметрические методы статистики.
Ссылки
- Дисперсионный анализ - Аналитическая статистика.
- Многофакторный дисперсионный анализ - Электронная библиотека.