Теория сложности вычислений

Материал из MachineLearning.

Перейти к: навигация, поиск
Данная статья является непроверенным учебным заданием.
Студент: Участник:DmitryKonstantinov
Преподаватель: Участник:Константин Воронцов
Срок: 8 января 2010

До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}.

См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.


Теория сложности вычислений — раздел теории вычислений, изучающий объем работы, требуемой для решения вычислительной проблемы.

Задача рассматривается как сложная, если решение проблемы требует большого количества ресурсов, независимо от алгоритма, используемого для ее решения. Теория формализует это интуитивное понятие, вводя математические модели вычислений для изучения этих проблем и количественной оценки объема ресурсов, необходимых для их решения, такие как время и используемая память. Возможны и другие меры сложности, такие как: количество сообщений (коммуникационная сложность), число элементов в схеме из функциональных элементов (схемная сложность) и количество процессоров. В частности, теории сложности вычислений определяет практические ограничения на то, что компьютеры могут и что не могут делать.

Тесно связаны с теорий сложности вычислений анализ алгоритмов и теория вычислимости. Основное различие между теорией сложности вычислений и анализом алгоритмов является то, что последняя посвящена анализу объема ресурсов, необходимых определенному алгоритму, чтобы решить проблему, в то время как первая задает вопрос более общего характера о всех возможных алгоритмах, которые могут быть использованы чтобы решить ту же проблему. Более точно, теория сложности вычислений пытается классифицировать проблемы, которые могут или не могут быть решены надлежащим количеством ограниченных ресурсов. В свою очередь, введение ограничений на имеющиеся ресурсы — это то, что отличает теорию сложности вычислений от теории вычислимости: последняя спрашивает какие проблемы могут быть решены в принципе алгоритмически, не ограничивая вычислительные ресурсы.

Содержание

Вычислительные проблемы

Вычислительные проблемы можно рассматривать как бесконечный набор пар: (экземпляр задачи, решение для данного экземпляра). Входной строкой для вычислительной проблемы является строка, описывающая экземпляр задачи. Выходная строка вычислительной проблемы — описание решения для экземпляра задачи, описанного входной строкой. Например, проблема распознавания простоты числа: экземпляр задачи — число, для которого следует определить простое оно или нет, решение — строка «да», если это число простое и «нет» в противном случае. Теория сложности вычислений рассматривает только массовые задачи, т.е. требование о бесконечности набора экземпляров задач обязательно.


Вычислительные модели

Классы сложности

Открытые проблемы

Ссылки

Личные инструменты