Участник:Anton/Песочница
Материал из MachineLearning.
Критерии согласия - это критерии проверки гипотез о законе распределения вероятностей. Такие критерии подразделяются на два класса:
- Общие критерии согласия применимы к самой общей формулировке гипотезы, а именно к гипотезе о согласии наблюдаемых результатов с любым априорно предполагаемым распределением вероятностей.
- Специальные критерии согласия предполагают специальные нулевые гипотезы, формулирующие согласие с определенной формой распределения вероятностей.
Содержание |
Общие критерии согласия
Нулевая гипотеза , где - эмпирическая функция распределения вероятностей; - гипотетическая функция распределения вероятностей.
Группы общих критериев согласия:
- критерии, основанные на изучении разницы между теоретической плотностью распределения и эмпирической гистограммой;
- критерии, основанные на расстоянии между теоретической и эмпирической функциями распределения вероятностей;
Критерии, основанные на сравнении теоретической плотности распределения и эмпирической гистограммы
- Критерий согласия хи-квадрат [1]
- Критерий числа пустых интервалов [2]
- Квартильный критерий Барнетта-Эйсена [3]
Критерии, основанные на сравнении теоретической и эмпирической функций распределения вероятностей
Расстояние между эмпирической и теоретической функциями распределения вероятностей является весьма эффективной статистикой для проверки гипотез о виде закона распределения вероятностей случайной величины.
Критерии согласия, использующие различные варианты анализа расстояния между теоретической () и эмпирической () функциями распределения:
Другие критерии:
Специальные критерии согласия
Нормальное распределение
Нормальный закон распределения вероятностей получил наибольшее распространение в практических задачах обработки экспериментальных данных. Большинство прикладных методов математической статистики исходит из предположения нормальности распределения вероятностей изучаемых случайных величин. Широкое распространения этого распределения вызвало необходимость разработки специальных критериев согласия эмпирических распределений с нормальным. Существуют как модификации общих критериев согласия, так и критерии, созданные специально для проверки нормальности.
Экспоненциальное распределение
Экспоненциальный закон распределения вероятностей является базовым законом, используемым в теории надежности. Его аналитическая простота делает его привлекательным для инженеров и исследователей.
Существует большое количество специальных критериев согласия для экспоненциального распределения:
- Критерий Шапиро-Уилка для экспоненциального распределения [15]
- Критерии типа Колмогорова-Смирнова [16] [17]
- Критерии типа Смирнова-Крамера-фон Мизеса для цензурированных данных. [18]
- Критерий Фроцини для экспоненциального распределения. [19]
- Корреляционный критерий экспоненциальности [20]
- Регрессионный критерий Брейна-Шапиро [21]
- Критерий Кимбера-Мичела. [22]
- Критерий Фишера для экспоненциального распределения. [23]
- Критерий Бартлетта-Морана. [24] [25]
- Критерий Климко-Антла-Радемакера-Рокетта [26]
- Критерий Холлендера-Прошана [27] [28]
- Критерий Кочара [29]
- Критерий Эппса-Палли-Чёрго-Уэлча [30]
- Критерий Бергмана [31]
- Критерий Шермана [32]
- Критерий наибольшего интервала [33]
- Критерий Хартли [34]
- Критерий показательных меток [35]
- Ранговый критерий независимости интервалов [36] [37]
- Критерии, основанные на трансформации экспоненциального распределения в равномерное
- Критерий Манн-Фертига-Шуера для распределения Вейбулла [40]
- Критерий Дешпанде [41]
- Критерий Лоулесса [42]
Равномерное распределение
Если - выборка из распределения вероятностей с функцией , то случайная величина распределена равномерно на интервале [0,1]. Поэтому установление равномерности распределения является по существу критерием согласия наблюдаемых данных с любым теоретическим распределением. Этим и объясняется повышенный интерес к поиску простых в вычислительном отношении и эффективных критериев равномерности распределения.
- Критерий Кимбела [43]
- Критерий Морана [44]
- Критерий омега-квадрат [45]
- Критерий Шермана [46]
- Критерий Ченга-Спиринга [47]
- Критерий Саркади-Косика [48]
- Энтропийный критерий Дудевича-ван дер Мюлена [49]
- Критерий равномерности Хегахи-Грина [50]
- Критерий Янга [51]
- Критерии типа Колмогорова-Смирнова [52]
- Критерий Фроцини для равномерного распределения [53]
- Критерий Гринвуда-Кэсенберри-Миллера [54]
- "Сглаженный" критерий Неймана-Бартона [55]
Критерии симметрии
Если отсутствуют предпосылки для проверки согласия эмпирического распределения с каким-либо теоретическим, то выявление даже самых общих свойств эмпирического распределения дает некоторую информацию для выбора приемов и методов обработки экспериментального материала.
Одним из таких практически важных свойств распределения является его симметричность относительно центра группирования значений случайной величины. Существует много критериев, проверяющих симметрию:
- "Быстрый" критерий Кенуя [56]
- Критерий симметрии Смирнова [57]
- Знаковый критерий симметрии [58]
- Одновыборочный критерий Вилкоксона [59]
- Критерий Антилла-Керстинга-Цуккини [60]
- Критерий Бхатачарья-Гаствирта-Райта (модифицированный критерий Вилкоксона) [61]
- Критерий Финча [62]
- Критерий Бооса [63].
- Критерий Гупты [64]
- Критерий Фрезера [65]
Ссылки
- ↑ Karl Pearson. On the Criterion that a Given System of Deviations from the Probable in the Case of Correlated System of Variables is such that it can be Reasonably Supposed to have Arisen from Random Sampling, Philosophical Magazine, 50, 157-175, 1900.
- ↑ Идье В., Драйад Д., Джеймс Ф., Рус М., Садуле Б. Статистические методы в экспериментальной физике. — М.: Атомиздат, 1976.
- ↑ Barnett A., Eisen E. A quartile test for differences in distribution. JASA. 1982. V. 77, №377. P. 47-51
- ↑ Kolmogorov A. N. Confidence limits for an unknown distribution function. AMS. 1941. V. 12. P. 461-463.
- ↑ Смирнов Н.В. Оценка расхождения между эмпирическими кривыми распределений в двух независимых выборках. Бюллетенеь МГУ. Сер. А. Вып.2. 1939. С. 13-14.
- ↑ Renyi A. On the theory of order statistics. Acta Mathem. Acad. Scientarium Hungarical. 1953. V. 4. P. 191-232.
- ↑ Смирнов Н.В. О критерии Крамера-фон Мизеса. Успехи матем. наук (новая серия). 1949. Т. 4. №4(32). С. 196-197.
- ↑ Мартынов Г.В. Критерии омега-квадрат. - М.:Наука. 1978.
- ↑ Anderson T.W., Darling D.A. A test for goodness-of-fit. JASA. 1954. V. 49. P. 765-769.
- ↑ Kuiper N.H. Tests concerning random points on a circle. Proc. Konikl. Nederl. Akad. Van Wettenschappen. 1960. S. A. V. 63. P. 38-47.
- ↑ Watson G.S. Googness-of-fit tests on a circle. Biometrika. 1961. V. 48. № 1-2. P. 109-114.
- ↑ Frozini B. V. On the distribution and power of a goodness-of-fit statistic with parametric and nonparametric applications. "Goodness-of-fit". Ed. by Revesz P., Sarkadi K., Sen P.K., Amsterdam-Oxford- New York: North-Holland. Publ. Comp., 1987, P. 133-154.
- ↑ Darling J. The Kolmogorov-Smirnov, Cramer-von Mises tests. AMS. 1957. V. 28. P. 823-838.
- ↑ Durbin J. Some methods of constructing exact tests. Biometrika. 1961. V. 48. № 1-2. P. 41-57.
- ↑ Shapiro S.S., Wilk M.B. An analisys of variance test for the exponential distribution (complete samples). Technometrics. 1972. V. 14. P. 355-370.
- ↑ Spinelli J.J., Stephens M.A. Tests for exponentiality when origin and scale paramters are unknown. Technometrics. 1987. V. 29. № 4. P. 471-476.
- ↑ Spurrier J.D. On overview of tests of exponentiality. Commun. Stat.-Theor. Meth. 1984. V. 13. P. 1635-1654.
- ↑ Pettit A.N. Tests for the exponentionality distribution with censored data using Cramer-von Mises statistics. Biometrika. 1977. V. 64. № 3. P. 629-632.
- ↑ Frozini B. V. On the distribution and power of a goodness-of-fit statistic with parametric and nonparametric applications. "Goodness-of-fit". Ed. by Revesz P., Sarkadi K., Sen P.K., Amsterdam-Oxford- New York: North-Holland. Publ. Comp., 1987, P. 133-154.
- ↑ Spinelli J.J., Stephens M.A. Tests for exponentiality when origin and scale paramters are unknown. Technometrics. 1987. V. 29. № 4. P. 471-476.
- ↑ Brain C.W., Shapiro S.S. A regression test for exponentiality: censored and complete samples. Technometrics. 1983. V. 25. № 1. P. 69-76.
- ↑ Kimber A.C. Tests for the exponential, Weibull and Gumbel distributions based on the stabilized probability plot. Biometrika. 1985. V. 72. № 3. P. 661-663.
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. Стр. 293.
- ↑ Moran P. A. P. The randomdivision of an interval, 11, JRSS, 1951, V. 13, P. 147-150.
- ↑ Кокс С., Льюис П. Статистический анализ последовательностей событий. Пер. с англ. - М.: Мир. 1969.
- ↑ Klimko L. A., Antle C. E., Rademaker A. W., Rockette H. E. Upper bounds for the power of invariant tests for the exponential distribution with Weibull alternative. Tachnometrics. 1975. V. 17. № 3. P. 357-360.
- ↑ Hollander M., Proshan F. Testing whether new is better than used. AMS. 1972. V. 43. P. 1136-1146.
- ↑ Sturges H. A. The choice of a class interval. JASA. 1926. V .21. P. 65-66.
- ↑ Kochar S. C. Testing exponentiality against monotone failure rate average. Commun. Stat.-Theor. Meth. 1985. № 2. P. 381-392.
- ↑ Epps T.W., Pulley L.B. A test of exponentiality vs. monotone-hazard alternatives from the emphirical characteristics function. JRSS. Sec. B. 1986. V. 48. № 2. P. 206-216.
- ↑ Bergman B. Crossing in the total time on test plot. Scand. J. Statist. 1977. V. 4. P. 171-177.
- ↑ Sherman B. Percentiles of the statistic. AMS. 1957. V. 28. № 1. P. 257-261.
- ↑ Гнеденко Б. В., Беляев Ю. К., Соловьев А. Д. Математические методы в теории надежности. - М.: Наука, 1965.
- ↑ Hartley H. O. The maximum F-ratio as a short-cut test of heterogeneity of variance. Biometrika. 1950. V. 37. P. 308-312.
- ↑ Кокс С., Льюис П. Статистический анализ последовательностей событий. Пер. с англ. - М.: Мир. 1969.
- ↑ Wald. A., Wolfowitz J. An exact test of randomness in the nonparametric case based on serial correlation. AMS 1943. V. 14. P. 378-388.
- ↑ Кокс С., Льюис П. Статистический анализ последовательностей событий. Пер. с англ. - М.: Мир. 1969.
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. Стр. 308.
- ↑ Greenwood V. The statistical study of infection discase. JRSS. Sec. A. 1946. V. 109. P. 85-110.
- ↑ Капур К., Ламберсон Л. Надежность и проектирование в технике. - М.: Мир. 1980.
- ↑ Deshpande J. V. A class of tests for exponentiality against increasing failure rate average alternatives. Biometrika. 1983. V. 70. P. 514-518.
- ↑ Lawless J. F. Statistical models and methods for lifetime data. - N.Y.: J. Welley, 1982.
- ↑ Kimball B F. Some basic theorems for developing tests of fit for the case of the nonparametric probability distribution function. 1. AMS. 1947. V. 18. P. 540-548.
- ↑ Moran P. A. P. The random division of an intervals. JRSS. 1947. Sec. B. V. 9. P. 92-98.
- ↑ Smirnoff N. Sur la distribution de . Compte Rendus de l'Academie des Sciences. Paris. 1932. № 202. P. 449.
- ↑ Sherman B. A random variable related to the spacing of sample values. AMS. 1950. V. 21. № 3. P. 339-361.
- ↑ Cheng S. W., Spiring F. A. A test to identify the uniform distribution with applications to probability plotting and other distributions. IEEE Trans. Reliability. 1987. V. R-36. № 1. P. 98-105.
- ↑ Kosik P., Sarkadi K. A new goodness-of-fit test. Proc. of 5-th Pannonian Symp. of Math. Stat., Visegrad. Hungary. 20-24 May, 1985, P. 267-272.
- ↑ Dudewiez E. J., van der Meulen E. C. Entropy-based tests of uniformity. JASA. 1981. V. 76. № 376. P. 967-974.
- ↑ Hegazy Y. A. S., Green J. R. Some new goodness-of-fit tests using order statistics. Appl. Statist. 1975. V. 24. № 3. P. 299-308.
- ↑ Young D. L. The linear nearest neighbour statistic. Biometrika. 1982. V. 69. № 2.P. 477-480.
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. Стр. 330
- ↑ Frozini B. V. On the distribution and power of a goodness-of-fit statistic with parametric and nonparametric applications. "Goodness-of-fit". Ed. by Revesz P., Sarkadi K., Sen P.K., Amsterdam-Oxford- New York: North-Holland. Publ. Comp., 1987, P. 133-154.
- ↑ Quesenberry C. P., Miller F. L. Power studies of some tests for uniformity. J. Statist. Comput. Simul. 1977. V. 5. P. 169-191.
- ↑ Neyman J. "Smooth" tests for goodness-of-fit. Scand. Aktuarietidsrift. 1937. V. 20. P. 149-199.
- ↑ Кенуй М. Г. Быстрые статистические вычисления. Упрощенные методы оценивания и проверки. - М.: Статистика. 1979.
- ↑ Смирнов Н. В. О критерии симметрии закона распределения случайной величины. ДАН СССР. 1947. Т. 56. № 1. С. 13-16.
- ↑ Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. Стр. 337.
- ↑ Wilcoxon F. Individual comparisons by ranking methods. Biometrics, Bull. 1945. V. 1. P. 80-83.
- ↑ Antille A., Kersting G., Zicchini W. Testing symmetry. JASA. 1982. V. 77. № 379. P. 639-646.
- ↑ Bhattachrya P. K. Gastwirth J. L. Wright A. L. Two modified Wilcoxon tests for symmetry about an unknown location parameters. Biometrika. 1982. V. 69. № 2. P. 377-382.
- ↑ Finch S. J. Robust univariate test of symmetry. JASA. 1977. V. 72. № 358. P. 387-392.
- ↑ Boos D. D. A test for summetry assotiated with the Hodges-Lehmann estimator. JASA. 1982. V. 77. № 379. P. 647-651.
- ↑ Gupta M. K. An asymptotically nonparametric test of symmetry. AMS. 1967. V. 38. P. 849-866.
- ↑ Fraser D. A. S. Most powerfull rank-type tests. AMS. 1957. V. 28. P. 1040-1043.
Литература
- Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. — 816 с.
- Лагутин М. Б. Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003. — 204-209 с.
Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |