МЛР
Материал из MachineLearning.
![]() | Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |
Многомерная линейная регрессия
Имеется множество объектов и множество ответов
. Также имеется набор
вещественнозначных признаков
. Введём матричные обозначения: матрицу информации
, целевой вектор
и вектор параметров
:
Алгоритм:
.
Оценим качество его работы на выборке методом наименьших квадратов:
, или, в матричных обозначениях,
.
Найдём минимум по α:
.
Если , то можно обращать матрицу
, где введено обозначение
.
В таком случае функционал качества записывается в более удобной форме:
, где
— проекционная матрица:
— вектор, являющийся проекцией
на
.
как нарисовать значок проекционной матрицы, чтобы его можно было отличить от того, на что матрица умножается?!
Сингулярное разложение
Пусть , тогда F представима в виде
, где:
-
— собственные значения матрицы
.[1]
-
— собственные вектора
, причём
.
-
— собственные вектора
, причём
.