Прогнозирование временных рядов методом SSA (пример)

Материал из MachineLearning.

Перейти к: навигация, поиск

SSA (Singular Spectrum Analysis, "Гусеница") - метод анализа и прогноза временных рядов. Базовый вариант метода состоит в преобразовании одномерного ряда в многомерный с помощью однопараметрической сдвиговой процедуры (отсюда и название "Гусеница"), исследовании полученной многомерной траектории с помощью анализа главных компонент (сингулярного разложения) и восстановлении (аппроксимации) ряда по выбранным главным компонентам. Таким образом, результатом применения метода является разложение временного ряда на простые компоненты: медленные тренды, сезонные и другие периодические или колебательные составляющие, а также шумовые компоненты. Полученное разложение может служить основой прогнозирования как самого ряда, так и его отдельных составляющих. "Гусеница" допускает естественное обобщение на многомерные временные ряды, а также на случай анализа изображений. В данной статье рассмотрим вариант алгоритма, предназначенный для анализа многомерного временного ряда.


Постановка задачи

Наблюдается система функций дискретного аргумента {$(f_i^{(k)})_{i=1}^N$, где k = 1, ..., s}. Параметр s, таким образом, имеет смысл размерности многомерной числовой последовательности, а N - количество элементов в последовательности. Требуется разложить ряд в сумму компонент (используя метод главных компонент, см. описание алгоритма), интерпретировать каждую компоненту, и построить продолжение ряда $(f_i^{(k)})_{i=1}^{N+M}$ по выбранным компонентам.


Описание алгоритма

Выберем n такое, что $0 < n \le N - 1$ - время жизни многомерной гусеницы. Пусть $\sigma = N - n + 1$ - длина гусеницы. Построим последовательность из n векторов в $R^{\tau}$, $\tau = s*\sigma$, следующего вида:

$$Y^{(l)} \in R^\tau, Y^{(l)} = (X^{(l,1)}, \ldots, X^{(l,s)})^T,$$

где $X^{(l,k)} = (f_{i+l-1}^{(k)})_{i=1}^{\sigma}$. Обозначим

$$Z = (Y^{(1)}, \ldots, Y^{(n)}).$$

Будем называть $Z$ нецентрированной матрицей наблюдений, порождённой гусеницей со временем жизни n. Проводимый в дальнейшем анализ главных компонент может проводиться как по центрированной, так и по нецентрированной выборкам. Для упрощения выкладок рассмотрим простейший нецентрированный вариант.

Рассмотрим ковариационную матрицу полученной многомерной выборки

$$C = \frac1n ZZ^T.$$

Личные инструменты