Биоинформатика

Материал из MachineLearning.

Перейти к: навигация, поиск

Биоинформа́тика или вычисли́тельная биоло́гия — в настоящее время, данным термином обозначаются любые попытки биологов ввести обобщения эвристического толка на гигантские массивы биологических данных. До недавнего времени (2005г), под биоинформатикой подразумевалось, в большинстве случаев, использование процедур сравнения символьных последовательностей (аминокислотные последовательности белков, нуклеотидные последовательности ДНК и РНК). Сейчас, происходит разворот в сторону более широкого понимания биоинформатики как области биологии, занимающейся "менеджментом биологических данных"

Содержание

Терминология

Под биоинформатикой понимают любое использование компьютеров для обработки биологической информации. На практике, иногда это определение более узкое, под ним понимают использование компьютеров для обработки экспериментальных данных по структуре биологических макромолекул белков и нуклеиновых кислот с целью получения биологически значимой информации. Основные усилия исследователей в этой области направлены на изучение геномов, анализ и предсказание структуры белков, анализ и предсказание взаимодействий молекул белка друг с другом и другими молекулами, а также реконструкция эволюции. Основная линия в проектах биоинформатики — это использование математических средств для извлечения полезной информации из «шумных» или слишком объёмных данных о структуре ДНК и белков, полученных экспериментально.

Термины биоинформатика и «вычислительная биология» часто употребляются как синонимы, хотя последний чаще указывает на разработку алгоритмов и конкретные вычислительные методы. Считается, что не всякое использование вычислительных методов в биологии является биоинформатикой, например, математическое моделирование биологических процессов — это не биоинформатика.

Основные области исследований

Анализ генетических последовательностей

C тех пор как в 1977 году был секвенирован фаг Phi-X174, последовательности ДНК всё большего числа организмов были дешифрованы и сохранены в базах данных. Эти данные используются для определения последовательностей белков и регуляторных участков. Сравнение генов в рамках одного или разных видов может продемонстрировать сходство функций белков или отношения между видами (таким образом могут быть составлены филогенетические деревья). С возрастанием количества данных уже давно стало невозможным вручную анализировать последовательности. В наши дни для поиска по геномам тысяч организмов, состоящих из миллиардов пар нуклеотидов используются компьютерные программы. Программы могут однозначно сопоставить («выровнять») похожие последовательности ДНК в геномах разных видов; часто такие последовательности несут сходные функции, а различия возникают в результате мелких мутаций, таких как замены отдельных нуклеотидов, вставки нуклеотидов, и их «выпадения» (делеции). Один из вариантов такого выравнивания применяется при самом процессе секвенирования. Так называемая техника «дробного секвенирования» (которая была, например, использована Институтом Генетических Исследований для секвенирования первого бактериального генома, Haemophilus influenzae) вместо полной последовательности нуклеотидов даёт последовательности коротких фрагментов ДНК (каждый длиной около 600—800 нуклеотидов). Концы фрагментов накладываются друг на друга и, совмещённые должным образом, дают полный геном. Такой метод быстро даёт результаты секвенирования, но сборка фрагментов может быть довольно сложной задачей для больших геномов. В проекте по расшифроке генома человека сборка заняла несколько месяцев компьютерного времени. Сейчас этот метод применяется для практически всех геномов, и алгоритмы сборки геномов являются одной из острейших проблем биоинформатики на сегодняшний момент.

Другим примером применения компьютерного анализа последовательностей является автоматический поиск генов и регуляторных последовательностей в геноме. Не все нуклеотиды в геноме используются для задания последовательностей белков. Например, в геномах высших организмов, большие сегменты ДНК явно не кодируют белки и их функциональная роль неизвестна. Разработка алгоритмов выявления кодирующих белки участков генома является важной задачей современной биоинформатики.

Биоинформатика помогает связать геномные и протеомные проекты, к примеру, помогая в использовании последовательности ДНК для идентификации белков.

Аннотация геномов

В контексте геномики аннотация — процесс маркировки генов и других объектов в последовательности ДНК. Первая программная система аннотации геномов была создана в 1995 году Оуэном Уайтом (Owen White), работавшим в команде, секвенировавшей и проанализировавшей первый декодированный геном свободноживущего организма, бактерии Haemophilus influenzae (палочка Пфайфера). Доктор Уайт построил систему для нахождения генов, тРНК и других объектов ДНК и сделал первые обозначения функций этих генов. Большинство современных систем работают сходным образом, но эти программы постоянно развиваются и улучшаются.

Основные программы сравнения аминокислотных и нуклеотидных последовательностей

  • ACT (Artemis Comparison Tool) — геномный анализ
  • Arlequin — анализ популяционно-генетических данных
  • BioEdit — редактор множественного выравнивания нуклеотидных и аминокислотных последовательностей
  • BioNumerics — коммерческий универсальный пакет программ
  • BLAST — поиск родственных последовательностей в базе данных нуклеотидных и аминокислотных последовательностей
  • ClustalW — множественное выравнивание нуклеотидных и аминокислотных последовательностей
  • ClustalX — множественное выравнивание нуклеотидных и аминокислотных последовательностей
  • JalView — редактор множественного выравнивания нуклеотидных и аминокислотных последовательностей
  • MacClade — коммерческая программа для интерктивного эволюционного анализа данных
  • Mesquite — программа для сравнительной биологии на языке Java
  • Muscle — множественное сравнение нуклеотидных и аминокислотных последовательностей. Более быстрая и точная по сравнению с ClustalW
  • PopGene — анализ генетического разнообразия популяций
  • Populations — популяционно-генетический анализ


Ссылки

См. также

Личные инструменты