Статистический анализ данных (курс лекций, К.В.Воронцов)/2010

Материал из MachineLearning.

Перейти к: навигация, поиск

Содержание

Задания

Анализ устойчивости критериев к нарушению предположений

  • Исследовать устойчивость одновыборочного критерия Стьюдента к нарушению предположения о нормальности данных. x^n — смесь распределений N(\mu,1) и U[-a+\mu,a+\mu] с весами p и 1-p соответственно (при генерации выборки используется случайный датчик — если его значение не превосходит p, то добавляем в выборку элемент, взятый из нормального распределения, иначе — элемент, взятый из равномерного). Для разных значений параметров выборки генерируются независимо.
    H_0\,:\; \mu=0, \;\; H_1\,:\; \mu\neq 0;
    p=0\,:\,0.02\,:\,1; \;\;  \mu=-1\,:\,0.05\,:\,1; \;\; n=100.
    Построить графики вида 1, 2, 3, сделать выводы о чувствительности критерия к зашумлению выборки.
Студент 1: a=1.
Студент 2: a=5.
Студент 3: a=10.
  • Исследовать устойчивость двухвыборочного критерия Стьюдента для независимых выборок к нарушению предположения о нормальности данных. x^n \sim N(\mu_1,1), y^n — смесь распределений N(\mu_2,1) и U[-a+\mu_2,a+\mu_2] с весами p и 1-p соответственно (при генерации выборки используется случайный датчик — если его значение не превосходит p, то добавляем в выборку элемент, взятый из нормального распределения, иначе — элемент, взятый из равномерного). Для разных значений параметров выборки генерируются независимо.
    H_0\,:\; \mu_1=\mu_2, \;\; H_1\,:\; \mu_1\neq\mu_2;
    \mu_1=0; \;\; p=0\,:\,0.02\,:\,1; \;\;  \mu_2=-1\,:\,0.05\,:\,1; \;\; n=100.
    Построить графики вида 1, 2, 3, сделать выводы о чувствительности критерия к зашумлению одной из выборок.
Студент 8: a=1.
Студент 9: a=5.
Студент 10: a=10.

Анализ чувствительности критериев к редактированию выборки

  • Известно, что исключение из выборки определённых наблюдений зачастую может достаточно сильно повлиять на результат анализа. Необходимо исследовать чувствительность одновыборочного критерия критерия Стьюдента к редактированию выборки.
    x^n \sim N(\mu,\sigma);
    H_0\,:\; \mu=0, \;\;\; H_1\,:\; \mu>0.
    При каждом значении параметра \mu генерируется выборка размера n, проводится проверка гипотезы H_0, затем по некоторому правилу из выборки исключается один из элементов, проверка гипотезы повторяется, затем исключается ещё один, и т.д. Обозначим за K максимальное число исключённых в таком процессе элементов. Построить графики вида 1, 2, 3, сделать выводы о чувствительности критерия к редактированию выборки.
Студент 4: n=100;\;\;K=50;\;\;\sigma=1;\;\;\mu=-1\,:\,0.01\,:\,1;\;\; на каждом шаге исключается максимальный элемент.
Студент 5: n=200;\;\;K=100;\;\;\sigma=5;\;\;\mu=-2\,:\,0.02\,:\,2;\;\; на каждом шаге исключается максимальный элемент.
Студент 6: n=100;\;\;K=50;\;\;\sigma=2;\;\;\mu=-2\,:\,0.02\,:\,2;\;\; на каждом шаге исключается минимальный элемент.
Студент 7: n=200;\;\;K=100;\;\;\sigma=5;\;\;\mu=-3\,:\,0.03\,:\,3;\;\; на каждом шаге исключается минимальный элемент.

Анализ поведения схожих критериев

Требуется исследовать поведение указанной пары статистических критериев, проверяющих одну и ту же гипотезу, сравнить мощность и достигаемые уровни значимости и сделать выводы о границах применимости критериев. Необходимо для каждого из критериев построить графики вида 1, 2, 3, и показать, в каких областях изменения параметров предпочтительнее использовать тот или иной критерий.

  • x^n \sim N(0,1),\;\;y^n \sim N(\mu,1);
    H_0\,:\; \mu=0, \;\;\; H_1\,:\; \mu\neq 0;
    \mu=-2\,:\,0.02\,:\,2;\;\; n=10\,:\,5\,:\,100.
Студент 11: двухвыборочный критерий Стьюдента для независимых выборок и критерий Уилкоксона-Манна-Уитни.
Студент 12: двухвыборочный критерий Стьюдента для связных выборок и критерий Уилкоксона для связных выборок.
Студент 13: двухвыборочные критерий Стьюдента для связных и независимых выборок.
Студент 14: критерий Уилкоксона-Манна-Уитни и медианный критерий.
Студент 15: критерий Уилкоксона для связных выборок и критерий знаков.
Личные инструменты