Анализ формальных понятий

Материал из MachineLearning.

Перейти к: навигация, поиск

Анализ формальных понятий (АФП) – прикладная ветвь алгебраической теории решеток.

Содержание

Основные определения

Определение 1. Формальный контекст \mathbb{K} есть тройка (G, M, I), где G – множество, называемое множеством объектов, M – множество, называемое множеством признаков, I\subseteq G\times M отношение инцидентности.

Отношение I интерпретируется следующим образом: для g\in G, m\in M имеет место gIm, если объект g обладает признаком m.

Для формального контекста \mathbb{K} = (G, M, I) и произвольных A\subseteq G и B\subseteq M определена пара отображений: A^{\prime} = \{m\in M\mid gIm \mbox{ for all } g\in A}, B^{\prime} = \{g\in G\mid gIm \mbox{ for all } m\in B}, которые задаютсоответствие Галуа между частично упорядоченными множествами (2^G,\subseteq) и (2^M,\subseteq) , а оператор (\cdot)^{\prime\prime} является оператором замыкания на G\dot\cup M – дизъюнктном объединении G и M, т.е. для произвольного A\subseteq G или A\subseteq M имеют место следующие соотношения~\cite{1989:Birkhoff:TLrus}:

  1. A\subseteq A^{\prime\prime} (экстенсивность),
  2. A^{\prime\prime\prime\prime} = A^{\prime\prime} (идемпотентность),
  3. если A\subseteq C, то A^{\prime\prime}\subseteq  C^{\prime\prime} (изотонность).

Множество A называется замкнутым если A^{\prime\prime} = A \cite{1989:Birkhoff:TLrus}.

Прикладные задачи

Программное обеспечение

Библиография и ссылки

machine 17:33, 30 октября 2010 (MSD)

Личные инструменты