Анализ клиентских сред

Материал из MachineLearning.

Перейти к: навигация, поиск

Содержание

Клиентская среда — это совокупность клиентов (пользователей, cубъектов), регулярно пользующихся фиксированным набором сервисов (товаров, ресурсов, предметов, объектов). Предполагается, что действия клиентов протоколируются в электронном виде. Примерами действий являются: использование сервиса или покупка товара, оценивание (рейтингование) сервиса или товара, обращение за информацией, оплата услуг, выбор тарифного плана, участие в маркетинговой акции, получение бонуса от компании, отказ от обслуживания, и т.д.

Анализ клиентских сред, АКС (customer environment analysis, CEA) — это технология обработки протоколов действий клиентов, позволяющая эффективно вычислять взаимно согласованные оценки сходства клиентов и сервисов, и использовать их для решения таких бизнес-задач, как автоматизация маркетинга, персонализация и улучшение качества сервисов, повышение удовлетворённости и лояльности клиентов, более эффективное привлечение и удержание клиентов.

Концепция клиентской среды введена К. В. Рудаковым в конце 90-х и положена в основу технологии анализа клиентских сред, развиваемой компанией Форексис.

Технология АКС может быть использована для построения рекомендующих систем (recommender system), персонализации предложений (targeting, direct marketing), и управления взаимоотношениями с клиентами (customer relationship management, CRM).

Наиболее близким к АКС направлением является коллаборативная фильтрация (collaborative filtering). Основное отличие в том, что АКС нацелен на получение взаимно согласованных оценок сходства клиентов и сервисов. Второе отличие в том, что в АКС рассматривается весь комплекс задач и методов, связанных с дальнейшим использованием полученных оценок сходства для визуализации, кластеризации, классификации и прогнозирования поведения клиентов.

Примеры клиентских сред

Клиентские среды возникают в самых разных сферах бизнеса, и не только бизнеса. Можно говорить о клиентских средах производителей товаров, дилерских сетей, сетей супермаркетов, операторов связи, эмитентов пластиковых карт, библиотек, интернет-магазинов, поисковых машин, социальных сетей, форумов, блогов и т. д.

Торговые сети

«Сервисами» являются товары, «клиентами» — постоянные покупатели, имеющие дисконтную карту. Действия клиентов — это покупки товаров.

Примеры задач:

  • Сделать клиенту направленное предложение тех товаров, которые ему с большой вероятностью понравятся. Персональное предложение может печататься с обратной стороны чека или выводиться на специальном терминале по запросу клиента.
  • Вовремя подсказать клиенту, где находится новый товар, о котором ещё мало кто знает, но который с большой вероятностью заинтересует данного клиента.

Операторы сотовой связи

«Сервисами» являются различные услуги (типы соединений), «клиентами» — абоненты сети. Действия клиентов — это звонки различных типов (входящие, исходящие, междугородние, международные, SMS, MMS, и т.д.), платежи, подключения и отключения услуг, смены тарифных планов, обращения в сервисный центр, и т.д..

Примеры задач:

  • Прогнозирование ухода клиентов (churn prediction), на основе сходства с уже ушедшими клиентами.
  • Сегментация клиентской базы, выделение целевых групп клиентов.
  • Выявление схожих услуг при формировании пакетных предложений.
  • Выявление необычного или потенциально опасного поведения клиентов (fraud detection).

Интернет-магазины книжной, аудио и видео продукции

«Сервисами» являются товары (книги, диски, фильмы, и т.д.), «клиентами» — постоянные покупатели. Действия клиентов — это либо покупки товаров, либо оценки (рейтинги) товаров.

Примеры задач:

  • Предсказать рейтинги товаров для данного пользователя и предложить ему список товаров, наиболее интересных для него.
  • Предложить персональную скидку на совместную покупку нескольких товаров (cross-selling).
  • Вовремя информировать клиента о появлении новых интересных для него товаров (up-selling).

Поисковые машины

«Сервисы» — это страницы или документы, предлагаемые в качестве результатов поиска, «клиенты» — пользователи поисковой машины. Действия клиентов — это переходы со страницы результатов поиска к найденному документу.

Примеры задач:

  • Ранжировать результаты поиска в таком порядке, чтобы в начале списка оказались документы, с большой вероятностью интересные для данного пользователя.
  • Разместить на странице таргетированную рекламу, предлагая данному пользователю посетить сайты, с большой вероятностью интересные именно ему, именно в данный момент.
  • Найти для данного сайта список наиболее близких к нему сайтов (например, для автоматической генерации страницы полезных ссылок).
  • Найти для данного сайта список сайтов, наиболее близких к нему относительно данного пользователя (для автоматической генерации персонализированного списка рекомендуемых ссылок).

Таким образом, технология АКС примыкает к анализу веба (web mining), точнее, к анализу поведения пользователей веба (web usage mining).

Возможны и другие, менее тривиальные, применения АКС, в которых сами термины «клиенты» и «сервисы» едва ли применимы. Однако методы обработки и анализа данных остаются теми же.

Парламентские выборы

Здесь в роли «сервисов» выступают политические партии, «клиентами» являются субъекты федерации, территориальные избирательные округа или избирательные участки. «Действия клиента» — это голоса избирателей, отданные партиям.

Задачи связаны в основном с интерпретацией результатов выборов:

  • Отранжировать партии по сходству относительно любой заданной партии.
  • Отранжировать регионы по сходству относительно любого заданного региона.
  • Понять и визуализировать (например, с помощью карты сходства) политический спектр партий.
  • Выделить схожие партии, «перетягивающие» голоса друг у друга.
  • Выделить регионы, в которых данная партия могла бы перетянуть голоса у других партий.

Анализ текстов

В данном случае «сервисами» являются ключевые слова или выражения, «клиентами» — тексты. «Действие клиента» соответствует тому, что данное ключевое слово встречается в данном тексте.

Примеры задач:

  • Автоматическая классификация и рубрикации больших объемов текстовых документов или новостных потоков.
  • Поиск документов по сходству с данным документом.
  • Поиск наиболее полных и релевантных документов по данной теме.

Социальные сети

В простейшем случае «сервисами» являются страницы (записи в блоге, личные страницы пользователей, разделы форума), «клиентами» — пользователи социального сервиса. Действия клиента — посещение страницы, просмотр сообщений, создание собственных сообщений, добавление/удаление друзей, и т.д. Социальные сети являются более сложным примером клиентской среды, поскольку в них приходится применять анализ текстовой информации. В общем случае имеется уже не два типа взаимосвязных сущностей (клиенты и сервисы), а три: пользователи, страницы и ключевые слова.

Примеры задач:

  • Персональное предложение интересных для данного пользователя страниц, форумов, контактов.
  • Автоматическая персонализированная классификация и рубрикация страниц, форумов, контактов.
  • Поиск единомышленников (like-minded people).

Основные принципы АКС

Технология АКС основана на вычислении количественных оценок сходства между сервисами и между клиентами. Функция расстояния (метрика) на множестве клиентов позволяет решать задачи классификации, кластеризации, сегментации, поиска схожих клиентов, обнаружения необычного поведения клиентов. Метрика на множестве сервисов позволяет структурировать ассортимент, позиционировать сервисы, находить сопутствующие и взаимозаменяемые сервисы. При решении задач персонализации и направленного маркетинга приходится использовать обе метрики одновременно.

Взаимосогласованные оценки сходства клиентов и сервисов

В простейших случаях сходство сервисов можно оценить по принципу «сервисы схожи, если ими пользуются одни и те же клиенты; чем больше общих клиентов, тем более схожи сервисы». Известно, например, что более 95% пользователей Amazon.com] не упускают возможности узнать, «какие ещё книги покупают клиенты, купившие эту книгу». Однако данный принцип сходства имеет ограниченную сферу применимости, так как он выдвигает чрезмерно жёсткое требование, чтобы схожие сервисы имели одних и тех же общих клиентов, тогда как вполне достаточно, чтобы они имели схожих клиентов. Например, сайты двух конкурирующих производителей видеотехники могут иметь очень мало общих клиентов, тем не менее, они схожи как по тематике, так и по целевой аудитории.

Более адекватные результаты даёт усовершенствованный принцип сходства: «сервисы схожи, если ими пользуются схожие (но не обязательно одни и те же) клиенты; в свою очередь, клиенты схожи, если они пользуются схожими (но не обязательно одинаковыми) сервисами». Этот принцип сложнее с точки зрения анализа данных, так как две меры сходства оказываются зависимыми друг от друга. Эффективная реализация этой идеи возможна путём выявления скрытых профилей.

Восстановление скрытых профилей клиентов и сервисов

Действия клиента являются проявлением его предпочтений, вкусов, привычек (taste). Предполагается, что существует скрытый профиль клиента — вектор, координаты которого соответствуют всевозможным предпочтениям; значение координаты есть относительная важность данного предпочтения для данного клиента.

Иногда бывает доступна небольшая часть пользовательского профиля в виде социально-демографических характеристик, собираемых через анкету. Анкета содержит такие атрибуты, как возраст, пол, город, образование, семейное положение, профессию, достаток, сферы интересов, и т.п. Качество анкетных данных, как правило, невысоко: они неточны, субъективны, содержат много пропусков и собираются лишь по части клиентов.

С другой стороны, каждый сервис также имеет свой скрытый профиль — это набор предпочтений, которые он способен удовлетворить. В некоторых случаях и здесь можно рассчитывать на наличие дополнительных данных. Во-первых, это каталоги сервисов, которые для удобства представляются в виде иерархии разделов или тем. Эта иерархия отражает структуру пользовательских предпочтений и образует тематическую часть профиля. Во-вторых, иногда бывают доступны некоторые атрибуты сервисов. Например, если речь идёт о товарах, то это производитель, стоимость, потребительские качества, и т.д. Эти данные вводятся либо экспертами, либо в путём автоматической обработки текстовых описаний товаров. Данные о сервисах также могут быть неточными, субъективными и неполными.

Основная задача заключается в том, чтобы восстановить скрытые профили клиентов и сервисов на основе наблюдаемых косвенных данных — протоколов действий клиентов и, возможно, дополнительной информации, причём довольно низкого качества.

В результате огромного количества отдельных выборов сервисы и клиенты перенимают атрибуты друг друга. Например, атрибут «возраст» на первый взгляд принадлежит исключительно клиентам. Однако сервисы, часто выбираемые клиентами от 15 до 25 лет, также приобретают этот атрибут и характеризуются как «молодёжные». С другой стороны, атрибут «классическая музыка», первоначально характеризующий положение музыкальных дисков в тематическом каталоге, переносится на тех пользователей, которые часто выбирают такие диски.

Объединение атрибутов клиентов и сервисов в единый унифицированный профиль даёт ряд важных преимуществ:

  • появляется возможность интерпретировать любой сервис или группу сревисов, а также любого клиента или группу клиентов в терминах, понятных маркетологам;
  • можно сравнивать не только клиентов с клиентами и сервисы с сервисами, но и клиентов с сервисами;
  • можно проводить сравнение по «частичному» профилю; например, сравнивать клиентов относительно заданного сервиса (группы сервисов) или сравнивать сервисы относительно заданного клиента (группы клиентов);
  • можно отказаться от хранения огромных объёмов сырых исходных данных и строить масштабируемые решения, выбирая размер хранимых профилей; в частности, тематический каталог может быть усечён на любом уровне иерархии;
  • обновление профилей не требует громоздких вычислений и может происходить в режиме реального времени;
  • достаточно лишь небольшого объёма данных о клиенте, чтобы восстановить его профиль; это достигается благодаря привлечению информации не только о данном клиенте, но и о схожих с ним клиентах;
  • профиль сервиса может быть построен априори, на основе его рубрикации или атрибутов, присвоенных экспертами; это снимает проблему «холодного старта» (‘cold start’ problem), когда новый сервис не предлагается из-за того, что он ещё никем не был выбран, и никем не выбирается из-за того, что ещё он никому не предлагался.

Итерационное согласование профилей клиентов и сервисов

Унифицированные скрытые профили клиентов и сервисов восстанавливаются по исходным протоколам действий клиентов. При этом доступные части профилей некоторых клиентов и некоторых сервисов играют роль начального приближения. Качество этой информации может быть довольно низким, что не столь важно, поскольку в дальнейшем она корректируется объективными данными, содержащимися в протоколах. Существенно то, что эта информация задаёт структуру унифицированного профиля и предопределяет интерпретацию его компонент.

Для восстановления скрытых профилей используются итерационные методы типа EM-алгоритма (expectation-maximization). Знание скрытых профилей сервисов позволяет вычислить скрытые профили клиентов; и, наоборот, знание скрытых профилей клиентов позволяет вычислить скрытые профили сервисов. На этом принципе и основаны итерационные методы восстановления взаимно согласованных скрытых профилей.

Применение профилей и оценок сходства для решения бизнес-задач

После того, как скрытые профили восстановлены, решение широкого спектра бизнес-задач становится относительно простым делом. В зависимости от целей анализа метрика на клиентах или сервисах может определяться по-разному. Часто имеет смысл использовать метрику, построенную не по всему профилю, а только по его небольшой части. Это позволяет избежать проблемы «проклятия размерности». Например, при поиске сервисов, интересных данному пользователю, учитываются только те компоненты профиля, которые для данного пользователя оценены как ненулевые.

Компоненты технологии АКС

Литература

Ссылки

Личные инструменты