Графические модели (курс лекций)
Материал из MachineLearning.
Страница курса 2013 года находится в стадии формирования. |
Курс посвящен математическим методам обработки информации, основанных на использовании внутренних взаимосвязей в данных и их последующем анализе. Эти методы широко используются при решении задач из разных прикладных областей, включая обработку изображений и видео, анализ социальных сетей, распознавание речи, машинное обучение. До 2011 года курс читался как спецкурс «Структурные методы анализа изображений и сигналов».
Целью курса является освоение математического аппарата для работы с графическими моделями. Предполагается, что в результате прохождения курса студенты обретут навыки самостоятельного построения графических моделей для решения задач из различных прикладных областей; будут способны решать задачи настройки параметров графических моделей по данным, определять подходящую структуру графической модели, выбирать методы, наиболее эффективные для работы с построенной моделью; получат опыт применения графических моделей для различных задач анализа изображений, сигналов, сетей. |
Лектор: Д.П. Ветров,
Семинарист: А.А. Осокин,
Ассистент: Д.А. Кропотов.
Расписание занятий
В 2013 году курс читается на факультете ВМиК МГУ по средам в ауд. 524, начало в 16-50 и по пятницам в ауд. ???, начало в 14-35.
Дата | Занятие | Материалы |
---|---|---|
13 февраля 2013 | Лекция 1 «Введение в курс. Байесовские рассуждения.» | |
15 февраля 2013 | Семинар 1 «Правила работы с вероятностями, байесовские рассуждения.» | |
20 февраля 2013 | Лекция 2 «Графические модели: байесовские и марковские сети» | |
22 февраля 2013 | Семинар 2 «Построение марковских сетей, фактор-графы» | |
27 февраля 2013 | Лекция 3 «Алгоритм Belief Propagation (BP) для вывода в ациклических графических моделях. Алгоритм Loopy BP.» | |
1 марта 2013 | Семинар 3 «Коды с малой плотностью проверок на чётность (LDPC-коды)» | LDPC-коды в Википедии |
6 марта 2013 | Лекция 4 «Скрытые марковские модели. Алгоритм сегментации сигнала, обучение с учителем.» | |
13 марта 2013 | Лекция 5 «ЕМ-алгоритм. Обучение скрытых марковских моделей без учителя.» | |
15 марта 2013 | Семинар 4 «ЕМ-алгоритм» | |
20 марта 2013 | Лекция 6 «Линейные динамические системы. Фильтр Калмана. Расширенный фильтр Калмана.» | |
22 марта 2013 | Семинар 5 «Матричные вычисления» | |
27 марта 2013 | Семинар 6 «Линейные динамические системы» | |
29 марта 2013 | Контрольная работа 1 | |
3 апреля 2013 | Лекция 7 «Алгоритмы на основе разрезов графов, -расширение.» | |
5 апреля 2013 | Семинар 7 «Алгоритмы разрезов графов» | |
10 апреля 2013 | Лекция 8 «Алгоритм Tree-ReWeighted Message Passing (TRW) для вывода в циклических графических моделях» | |
12 апреля 2013 | Семинар 8 «Двойственное разложение» | |
17 апреля 2013 | Лекция 9 «Структурный метод опорных векторов (SSVM)» | |
19 апреля 2013 | Семинар 9 «Разбор практического задания по SSVM» | |
24 апреля 2013 | Лекция 10 «Методы Монте Карло по схеме марковских цепей (MCMC)» | |
26 апреля 2013 | Семинар 10 «Модель Изинга» | |
8 мая 2013 | Лекция 11 «Вариационный вывод» | |
15 мая 2013 | Лекция 12 «Алгоритм Expectation Propagation (EP)» | |
17 мая 2013 | Контрольная работа 2 |
Практические задания
Задание 1. «Алгоритм Loopy Belief Propagation для LDPC-кодов».
Задание 2. «Алгоритм -расширения для задачи стерео».
Задание 3. «Структурное обучение».
Система выставления оценок по курсу
- При наличии несданных заданий максимальная возможная оценка за курс — это «удовлетворительно».
- Итоговая оценка вычисляется по формуле , где Oral — оценка из пяти баллов за устный экзамен, HomeWork — баллы, набранные за практические задания (см. таблицу выше), Mark — итоговая оценка по 5-балльной шкале. Нецелые значения округляются в сторону ближайшего целого, превосходящего дробное значение.
- Студент может отказаться от оценки и пойти на пересдачу, на которой может заново получить Oral.
- За каждое несданное задание выставляется минус 10 баллов в HomeWork (допускаются отрицательные значения).
- Если на экзамене итоговая оценка оказывается ниже трех, студент отправляется на пересдачу. При этом оценка Oral, полученная на пересдаче, добавляется к положительной (три и выше) оценке Oral, полученной на основном экзамене и т.д. до тех пор, пока студент не наберет на итоговую оценку «удовлетворительно» (для итоговых оценок выше «удовлетворительно» оценки Oral не суммируются).
- Студент может досдать недостающие практические задания в любое время. При этом проверка задания гарантируется только в том случае, если задание сдано не позднее, чем за неделю до основного экзамена или пересдачи.
- Штраф за просрочку сдачи заданий начисляется из расчета 0.5 балла за неделю, но не более 5 баллов.
- В случае успешной сдачи всех практических заданий студент получает возможность претендовать на итоговую оценку «хорошо» и «отлично». При этом экзамен на оценку Oral может сдаваться до сдачи всех заданий (оценки Oral в этом случае не суммируются).
- Экзамен на оценку Oral сдается либо в срок основного экзамена, либо в срок официальных пересдач.
Программа курса
Литература
- Barber D. Bayesian Reasoning and Machine Learning. Cambridge University Press, 2012.
- Bishop C.M. Pattern Recognition and Machine Learning. Springer, 2006.
- Mackay D.J.C. Information Theory, Inference, and Learning Algorithms. Cambridge University Press, 2003.
- Jordan M.I. (Ed.) Learning in graphical models. Cambridge MA: MIT Press, 1999
- Cowell R.G., Dawid A.P., Lauritzen S.L., Spiegelhalter D.J. Probabilistic networks and expert systems. Berlin: Springer, 1999.
- Памятка по теории вероятностей
Страницы курса прошлых лет
См. также
Курс «Байесовские методы машинного обучения»
Спецсеминар «Байесовские методы машинного обучения»
Математические методы прогнозирования (кафедра ВМиК МГУ)
Онлайн-курс Стэнфордского университета по вероятностным графическим моделям