Участник:Gukov/Песочница

Материал из MachineLearning.

Перейти к: навигация, поиск

Содержание

Введение

Постановка математической задачи

Задача численного интегрирования состоит в приближенном нахождении значения интеграла

( 1)
I = \int\limits_a^b f(x)\,dx,

где 
f(x) 
- заданная и интегрируемая на   [a, b] функция. В качестве приближенного значения рассматривается число

( 2)
I_n=\sum_{i=0}^n c_k f(x_k),

где c_k - числовые коэффициенты и x_k - точки отрезка [a,b],  k = 0, 1, \ldots, n . Приближенное равенство

\int\limits_a^b f(x)\,dx=\sum_{k=0}^n c_k f(x_k)

называется квадратурной формулой, а сумма вида (2) - квадартурной суммой. Точки x_i называются узлами квадратурной формулы. Разность

\Psi _n = \int\limits_a^b f(x)\,dx-\sum_{k=0}^n c_k f(x_k)

называется погрешностью квадратурной формулы. Погрешность зависит как от расположения узлов, так и от выбора коэффициентов.

Изложение метода

Числовой пример

Рекомендации программисту

Заключение

Список литературы

Личные инструменты