Статистический анализ данных (курс лекций, К.В.Воронцов)/2015/1
Материал из MachineLearning.
Ниже под обозначением понимается выборка объёма из смеси нормального распределения и распределения с весами и соответственно (при генерации каждой выборки используется случайный датчик — если его значение не превосходит , то добавляем в выборку элемент, взятый из нормального распределения, иначе — элемент, взятый из распределения F).
Анализ поведения схожих критериев
Требуется исследовать поведение указанной пары статистических критериев, подходящих для решения одной и той же задачи, сравнить мощность и достигаемые уровни значимости и сделать выводы о границах применимости критериев. Необходимо для каждого из критериев построить графики зависимости достигаемых уровней значимости и оценок мощностей от параметров, и показать, в каких областях изменения параметров предпочтительнее использовать тот или иной критерий. Для получения более гладких графиков рекомендуется применять оба критерия к одним и тем же выборкам, а не генерировать их отдельно для каждого критерия.
- Сендерович: , сравнить z-критерии в версиях Вальда и множителей Лагранжа.
- Лисяной: , сравнить z-критерий (в версии множителей Лагранжа) и точный критерий.
-
средние равны,
средние не равны;
- Колмаков: сравнить версии t-критерия для равных и неравных дисперсий.
- Шапулин: сравнить t- и z-критерии для неравных дисперсий.
- Тюрин: сравнить t-критерий для неравных дисперсий и критерий Манна-Уитни-Уилкоксона.
- Чистяков: сравнить критерии Ансари-Брэдли и Зигеля-Тьюки.
- Корольков: сравнить критерии Фишера и Ансари-Брэдли.
-
среднее значение равно нулю,
среднее значение не равно нулю;
- Козлов: сравнить критерии знаков и знаковых рангов.
-
неверна;
- Апишев: — стандартное распределение Коши; сравнить критерии Андерсона-Дарлинга и Лиллиефорса.
Анализ устойчивости критериев к нарушению предположений
Требуется исследовать поведение указанного критерия в условиях нарушения лежащих в его основе предположений. Оценить мощность и достигаемый уровень значимости критерия при различных значениях параметров, сделать выводы об устойчивости.
- Двухвыборочный t-критерий для равных дисперсий, нарушение предположения о равенстве дисперсий.
- Хальман:
- Одновыборочный t-критерий, нарушение предположения о нормальности.
- Дойков: — распределение Коши с коэффициентом сдвига и коэффициентом масштаба
- Славнов: — непрерывное равномерное распределение на
- Одновыборочный критерий хи-квадрат для гипотезы о дисперсии, нарушение предположения о нормальности.
- Ожерельев: — непрерывное равномерное распределение на
- Критерий Фишера для проверки равенства дисперсий, нарушение предположения о нормальности.
- Лукашкина: — непрерывные равномерные распределения;
- Готман: — непрерывное равномерное распределение;