Интерполяция полиномами Лагранжа и Ньютона
Материал из MachineLearning.
Содержание |
Постановка задачи
Пусть задана функция
.
Пусть заданы точки
из некоторой области .
Пусть значения функции известны только в этих точках.
Точки называют узлами интерполяции.
- шаг интерполяционной сетки.
Задача интерполяции состоит в поиске такой функции из заданного класса функций, что
Метод решения задачи
Полином Лагранжа
Представим интерполяционную функцию в виде полинома
где - полиномы степели n вида:
Очевидно, что принимает значение 1 в точке и 0 в остальных узлах интерполяции. Следовательно в точке исходный полином принимает значение
Таким образом, построенный полином является интерполяционным полиномом для функции
на сетке .
Полином Ньютона
Интерполяционный полином в форме Лагранжа не удобен для вычислений тем, что при увеличении числа узло интерполции приходится перестраивать весь полином заного.
Перепишем полином Лагранжа в другом виде: