Рациональная интерполяция

Материал из MachineLearning.

Перейти к: навигация, поиск

Содержание

Введение

Некоторые функции нельзя с достаточной точностью приблизить полиномами или полиномиальное приближение очень медленно сходится. В этом случае разумно обратиться к другому методу - к дробно-рациональному приближению (иногда называют просто рациональное), которое соответсвует отношению двух многочленов.

R(x)=\frac{a_0+a_1x+\dots+a_px^p}{b_0+b_1x+\dots+b_px^p}, p+q+1=n

Коэффициенты a_i, b_i можно найти из совокупности соотношений R(x_j)=y_j, j=1,\dots,n, которые можно записать в виде

 \sum_{j=0}^{p} a_j x_j^j-f(x_i)\sum_{j=0}^{q}b_j x_i^j=0, i=1,\dots, n

Погрешность вычислений

Пример использования

Список литературы

Личные инструменты