Структурные модели и глубинное обучение (регулярный семинар)
Материал из MachineLearning.
Содержание |
Описание семинара:
Deep Learning – это разновидность машинного обучения, в основе которой лежат нейронные сети. Сегодня на использовании «глубинного обучения» строятся системы распознавания речи, распознавание визуальных объектов (как статических, так и движущихся) и, наконец, взаимодействие компьютерных систем с естественным языком и вычленение смыслов. Многие ученые считают Deep Learning революцией в машинном обучении, см. например, интервью с директором Facebook по искусственному интеллекту Яном Лекуном (Yann LeCun) (перевод)
Цели исследований научной группы:
- Разработка новых алгоритмов глубинного обучения (Deep Learning),
- Решение прикладных задач с использованием методов Deep Learning (автоматическое описание изображений/видео, описание 3D формы, анализ нейро-данных, анализ медицинских изображений, и т.п.),
- Теоретические анализ моделей Deep Learning, в т.ч. и с использованием теории структурных моделей
Время заседаний:
Регулярный семинар, проводится в ИППИ РАН по понедельникам в 18-30, ауд. 615.
Научные руководители семинара
Е.В. Бурнаев и В. Г. Спокойный
Организатор семинара
Совместный учебно-научный семинар магистерской программы Математические методы оптимизации и стохастики Факультета Компьютерных наук НИУ ВШЭ, Института проблем передачи информации РАН и Лаборатории ПреМоЛаб МФТИ. Куратор семинара Евгений Бурнаев (профили в НИУ ВШЭ и на MathNet.ru)