Участник:Fedimser
Материал из MachineLearning.
Федоряка Дмитрий Сергеевич
Содержание |
Общая информация
МФТИ, ФУПМ
Кафедра "Интеллектуальные системы"
Направление "Интеллектуальный анализ данных"
e-mail: fedimser@yandex.ru
сайт: fedimser.github.io
Отчеты о научно-исследовательской работе
Весна 2016, 6-й семестр
Смеси моделей векторной авторегрессии в задаче прогнозирования временных рядов
В данной статье исследуется задача краткосрочного прогнозирования временных рядов. Рассматриваются временные ряды разного масштаба, связанные между собой и обладающие свойством периодичности. Задача прогнозирования сводится к задаче регрессии, которая решается с помощью линейной модели. Для повышения её точности предлагается применить композицию моделей. Композиции строятся с помощью бэггинга, метода случайных подпространств и алгоритма бустинга AdaBoost. Также предлагается эвристический итерационный алгоритм композиции моделей, основанный на идее алгоритма кластеризации K-means. С помощью предлагаемых методов производится построение прогноза потребления электроэнергии в Турции и Польше, а также цен на электроэнергию в Германии с учетом информации о погоде.
Осень 2016, 7-й семестр
Hierarchic Topic Models Visualization
Hierarchic topic models are good tool for representing big amount of text documents. However, displaying such models on screen is difficult problem itself.
This paper discusses problem of hierarchic topic models visualization. It introduces concept of tree visualization with polygons.
Also it considers problems of quality measuring and representation of additional information.
This article also describes implementation of visualization algorithms with usage of BigARTM topic modeling library.
Весна 2017, 8-й семестр
Технология интерактивной визуализации тематических моделей (выпускная квалификационная работа бакалавра)
В данной работе исследуются методы визуализации тематических моделей коллекций текстовых документов. Рассматривается несколько способов визуализации тематических моделей, в том числе темпоральных и иерархических. Ставится задача построения спектра тематической модели. Предлагается несколько алгоритмов её решения и разрабатывается методика оценки их качества. Задача обобщается на случай иерархических тематических моделей. Описывается созданная информационная система VisARTM для автоматического создания и визуализации тематических моделей.