Критерий Колмогорова-Смирнова

Материал из MachineLearning.

Перейти к: навигация, поиск

Критерий Колмогорова-Смирнова используется для проверки гипотезы H_0: "случайная величина X имеет распределение F(x)".

Содержание

Примеры задач

Критерий Колмогорова-Смирнова уместно применять в тех случаях, когда нужно проверить, подчиняется ли наблюдаемая случайная величина некоторому закону распределения, известному с точностью до параметров.

Описание критерия

Пусть X_n - выборка независимых одинаково распределённых случайных величин, F_n(x) - эмпирическая функция распределения, \Phi(x) - некоторая фиксированная "истинная" функция распределения. Тогда статистика критерия определяется следующим образом:

D_n=\sup_x |F_n(x)-\Phi(x)|.

Обозначим через H_0 гипотезу о том, что выборка подчиняется распределению \Phi(X)\in \mathrm{C}^1(\mathbb{X}). Тогда по теореме Колмогорова для введённой статистики справедливо:

\forall t>0: \quad \lim_{n \to \infty}P(\sqrt{n} D_n \leq t)=K(t)=\sum_{j=-\infty}^{+\infty}(-1)^j \mathrm{e}^{-2j^2t^2}.

Гипотеза H_0 отвергается, если статистика \sqrt{n}D_n\! превышает квантиль распределения K_\alpha заданного уровня значимости \alpha, и принимается в противном случае.

Использование критерия для проверки нормальности

При помощи критерия Колмогорова-Смирнова определяется, описывает ли заданная функция наблюдаемое распределение X, в то время как для проверки нормальности требуется выяснить, принадлежит ли функция распределения величины X параметрическому семейству функций. Один из возможных способов решения этой проблемы заключается в вычислении выборочного среднего и выборочной дисперсии и последующем применении критерия к нормализованной выборке

y_i=\frac{x_i-\bar{x}}{\sqr{\sigma_{\bar{x}}^2}}.

Если эта нормализованная выборка имеет распределение N(0, 1), то считается, что исходная выборка также распределена нормально с параметрами (\bar{x}, \sigma_{\bar{x}}).

Литература

  1. Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. — 816 с.
  2. Kolmogorov А. N. Confidence limits for an unknown distribution function // AMS. 1941. V. 12. P. 461-463.
  3. Смирнов Н. В. Оценка расхождения между эмпирическими кривыми распределений в двух независимых выборках // Бюллетень МГУ. Сер. А. Вып. 2. 1939. С. 13—14.

См. также

Ссылки

Личные инструменты