Модель Тригга-Лича
Материал из MachineLearning.
Введение
Существует довольно очевидная теорема: "Если непрерывная функция на концах некоторого интервала имеет значения разных знаков, то внутри этого интервала у нее есть корень (как минимум, один, но м.б. и несколько)". На базе этой теоремы построено численное нахождение приближенного значения корня функции. Обобщенно этот метод называется дихотомией, т.е. делением отрезка на две части. Обобщенный алгоритм выглядит так:
- Задать начальный интервал ;
- Убедиться, что на концах функция имеет разный знак;
- Повторять
- выбрать внутри интервала точку ;
- сравнить знак функции в точке со знаком функции в одном из концов;
- если совпадает, то переместить этот конец интервала в точку ,
- иначе переместить в точку другой конец интервала;
- пока не будет достигнута нужная точность.
Варианты метода дихотомии различаются выбором точки деления. Рассмотрим варианты дихотомии: метод половинного деления и метод хорд.
Метод половинного деления
Метод половинного деления известен также как метод бисекции. В данном методе интервал делится ровно пополам.
Такой подход обеспечивает гарантированную сходимость метода независимо от сложности функции - и это весьма важное свойство. Недостатком метода является то же самое - метод никогда не сойдется быстрее, т.е. сходимость метода всегда равна сходимости в наихудшем случае.
Метод половинного деления:
- Один из простых способов поиска корней функции одного аргумента.
- Применяется для нахождения значений действительно-значной функции, определяемому по какому-либо критерию (это может быть сравнение на минимум, максимум или конкретное число).
Метод половинного деления как метод поиска корней функции
Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |