Модель Тригга-Лича
Материал из MachineLearning.
Введение
Модель Тригга-Лича применяется в адаптивных методах прогнозирования временных рядов.
Модель Тригга-Лича относится к моделям с адаптивными параметрами адаптациями, то есть, является моделью с повышенной способностью к самообучению.
А. Триггом и А. Личем было предложено модифицировать предсказывающие системы, использующие экспоненциальное сглаживание, посредствои изменения скорости реакции в зависимости от величины контнольного сигнала. В простейшей модели это эквивалентно регулированию параметра сглаживания . Наиболее очевидный способ заставить систему автоматически реагировать на расхождение прогнозов и фактических данных - это увеличение с тем, чтобы придать больший вес свежим данным и, таким образом, обеспечить более быстрое приспособление модели к новой ситуации. Как только система приспособилась, необходимо опять уменьшить величину для фильтрации шума.
Простой способ достижения такой адаптивной скорости состоит в выборе
- ,
где - скользящий контрольный сигнал.
На рис.1 показано испытание полиномиальной модели нулевого порядка с переменным параметром при прогнозировании искусственного ряда.
Крестики на рисунке отражают значения членов временного ряда, в котором наблюдается изменение ступенчатого типа. Ряд искусственно генерирован по модели
- , при ;
- , при ;
- ;
- ;
- ,
где - неавтокоррелирванные случайные нормальные отклонения с нулевым математическим ожиданием и дисперсией .
Реакция простейшей модели экспоненциального типа с постоянным коэффициентом сглаживания отмечена кружками. Пунктирная линия характеризует реакцию подобной же системы, но с переменным . Можно видеть, что система с адаптивным приспосабливается к ступенчатым изменениям намного быстрее, а после отработки ступеньки размах ее колебаний не больше, чем у обычной системы, поскольку контрольный сигнал, построенный по принципу сглаженной ошибки, остается большим, как правило, только пока прогнозирующая система находится в переходном режиме. Аналогичная модификация возможна и для более сложных моделей. Рассмотрим частный случай обобщенной модели Р.Брауна (модель Брауна) - модель линейного роста ()
- ,
для которой уравнения обновления коэффицинтов будут:
- ;
- ;
Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |