Теория Валианта
Материал из MachineLearning.
Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |
Теория вероятно почти корректного обучения (теория Валианта, probably approximately correct, PAC-learning) — теория, предложенная Лесли Валиантом в 1984 году для математического анализа машинного обучения. Работа Валианта акцентирует внимание на том, что проблематика вычислительного обучения тесно связана также и с вопросам вычислительной сложности алгоритмов.
В теории вероятно почти корректного обучения обучаемый (learner) получает некоторый набор примеров и должен выбрать некоторую функцию (гипотезу) из определенного класса функций. Цель обучаемого состоит в том, чтобы с высокой вероятностью выбранная функция была, в некотором смысле, «похожа» на истинную гипотезу. Обучаемый должен быть эффективным (то есть использовать в процессе работы приемлемое количество вычислительных ресурсов).
Содержание |
Вероятно почти корректное обучение
Основные понятия
- Обучаемый (learner) — объект, участвующий в процессе обучения. В данном контексте обучаемый — алгоритм.
- Объекты на которых выполняется обучение назовём примерами. Поскольку нам будет важна вычислительная сложность, будем считать, что примеры задаются некоторым описанием — булевым вектором.
- — множество примеров с описанием длины n.
- — пространство примеров (instance space), множество всех возможных примеров.
- — (неизвестное) вероятностное распределение на пространстве примеров. x ~ D — означает, что x - случайная величина с распределением D.
- Каждый пример имеет одну пометку, для простоты будем считать, что множество пометок состоит из двух элементов: {0,1}. Концепция(concept) — это функция, отображающая примеры на пометки. — семейство концепций, подмножество множества всех булевых функций, определенных на множестве X.
- — целевая концепция: то, что мы ищем в процессе обучения.
- Гипотеза h — некоторая булева функция на множестве , которую выдает обучаемый. Гипотеза является предсказанием целевой концепции.
- Ошибка гипотезы. — вероятность того, что гипотеза h не совпадает с целевой концепцией f на случайном значении x ~ D: .
Пример
Объем обучающей выборки (Sample complexity)
Определение, теоремы
Вычислительная сложность обучения
Связь PAC-learning с классами сложности (), математической криптографией (односторонние функции, криптосистемы)
Ссылки
- Valiant L.G. A theory of the learnable // Communications of the ACM. — 1984 T. 27. — С. 1134-1142.