Кривая ошибок
Материал из MachineLearning.
![]() | Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |
Кривая ошибок или ROC-кривая – часто применяемый способ представления результатов двухклассовой (бинарной) классификации.
Кривая ошибок в задаче классификации
Рассмотрим задачу логистической регрессии в случае двух классов. Традиционно, один из этих классов будем называть классом «с положительными исходами», другой - «с отрицательными исходами» и обозначим множество классов через . Рассмотрим линейный классификатор для указанной задачи:
.
Параметр полагается равным
, где
– штраф за ошибку на объекте класса
,
. Эти параметры выбираются из эмперических соображений и зависят от задачи.
Нетрудно заметить, что в задаче существенны не сами параметры , а их отношение:
. Поэтому при решении задачи логично использовать функционал, инвариантный относительно данного отношения.
Рассмотрим два следующих функционала:
1. False Positive Rate ()– доля объектов выборки
ложно положительно классификацированных алгоритмом
.
2. True Positive Rate () – доля правильно положительно классифицированных объектов.
ROC-кривая показывает зависимость количества верно классифицированных положительных объектов (по оси Y) от количества неверно классифицированных отрицательных объектов (по оси X).